

Nuestra firma es una empresa dinàmica, constituida por la aportación de recursos humanos altamente cualificados y con una amplísima experiencia en el diseño y fabricación de reductores de velocidad.

Nuestra amplia gama de productos, calidad y servicio, nos permiten ser una empresa de referencia en el sector, una empresa en continuo creciemiento adaptándose a las nuevas necesidades de un mercado en evolución.

Grácias a nuestro sistema de fabricación dotado de maquinária de alta tecnología y a la experiencia de nuestro personal, podemos mantener alta la competitividad por la optimización de costes estructurales y de producción.

Para el diseño y fabricación de nuestros productos hemos priorizado siempre la calidad del producto, que tiene como resultado la satisfacción de nuestros clientes.

Este catálogo está basado en reductores estándar, no obstante nuestra firma tiene un alto prestigio por los diseños y fabricados especiales para determinados sectores, tales como: Aeropuertos, avicultura, manutención, envasado, alimentación, etc.

Nuestro Dpto. técnico puede desarrollar cualquier diseño a petición de nuestros clientes o colaborar conjuntamente, aportando nuestra experiencia en la elaboración de éste.

En el presente catálogo, queremos reflejar la imagen de nuestra firma, el total compromiso con la calidad, servicio y atención a nuestros clientes.

Es una gran satisfacción que este catálogo pueda ayudar y formar parte en los diseños de sus productos.

Our firm is a dynamic business, constitued by the contribution of human resources highly qualified and a broad experience in the design and production of reducers of speed.

Our wide range of products, quality and service, allow us to be a company of reference in the sector, a growing company adapting to the new needs of an evolving market.

Thanks to our system of gifted production of high technology machinery and to the experience of our staff, we can mantain high competitiveness by optimizing structural costs and production.

For the design and manufacture of our products we have always prioritized the quality of the product, resulting in the satisfaction of our clients.

This catalogue is based on standard reducers, neverthless our firm has a high prestige for the special designs and manufactured in determined sectors, such as: Airports, poultry farming, maintenance, packing, etc.

Our Technical Dept. can develop any design at the request of our clients or collaborate together, contributing our experience in the elaboration of this.

In the present catalogue, we want to reflect the image of our firm, the total committent with the quality, service and attention to our clients.

It's a great satisfaction that this catalogue can help and form part in the designs of your products.

Notre société est une entrerprise dynamique, disposant d'un personnel houtement quálifié et béneficiant d'une très grande expérience dans la conception et la production de reducteurs de vitesse.

Notre large gamme de produits, qualité et service, faire de nous une entrerprise leader dans le secteur, une société en croissance continue, l'adaptation aux noveaux besoins d'un marché changeant.

Merci à notre système de fabrication équipé de machines de haute technologie et l'expertise de notre personnel, nous maintiennent un niveau élevé de compétitivité par l'optimisation des coûts de structure et de production.

Pour la conception et la fabrication de nos produits que nous avons toujours donné la priorité à la qualité des produits, résultant en la satisfaction de nos clients.

Ce catalogue est basé sur les engins standard, mais notre société dispose d'un grand prestige et des modèles spéciaux réalisés pour certains secteurs, tels que les aéroports, de la volaille, de la nourriture, de l'emballage, de la nourriture, etc.

Notre Technicien Département peut développer toute la conception à la demande de nos clients ou de travailler ensemble, de partager notre expérience dans le développement de cette.

Dans cette brochure, nous voulons refléter l'image de notre société, l'engagement total envers la qualité, le service et l'attention à nos clients.

Il est une grande satisfaction que ce catalogue peut aider et prendre part à la conception de leurs produits.

La dirección/ The direction/ La direction

PROGRAMA DE FABRICACIÓN - MANUFACTURING PROGRAMME

SERIE K Págs: 15-16
SERIE KM Págs: 17-37
SERIES KMV Págs: 37-43
SERIE KP-MKP Págs: 44-47
SERIE KK-MKK Pags: 48-53
SERIE MP Págs: 55-56

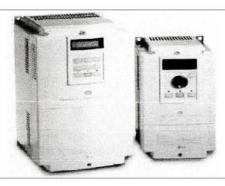
-PROGRAMME DE FABRICATION

SERIE MRD

Págs: 57-87

SERIE ORTOGONAL X

Págs: 88-125


MOTORES TRIFÁSICOS

Págs: 127-129

MOTORES CON FRENO TRIFÁSICOS, MONOFÁSICOS Y C.CONTINUA

Págs: 131-133

CONVERTIDORES DE FRECUENCIA

Págs: 134-137

SELECCIÓN DEL REDUCTOR/CHOICE OF REDUCER/CHOIX DU REDUCTEUR

Los parámetros necesarios para la selección del reductor son:

- Potencia del motor a aplicar (KW o HP) (n₁= 1400 rpm)
- R.p.m solicitadas a la salida del reductor (n₂)
- Par salida (Nm)
- Relación de reducción (i)
- Factor de servicio (Fs)

Con estos parámetros conocidos hallar en las tablas de selección el reductor adecuado.

En el momento de cursar pedido estos datos deberán ser incluidos, así como la posición, forma de montaje y características del motor (autofrenante, monofásico, c. contínua, antideflagrante, antiexplosivo, etc.)

Si se solicita el reductor preparado para acoplar motor (PAM) deberá indicarse el tipo de motor (63, 71, 80, etc.) indicando dimensiones de eje y brida.

En los grupos motorreductores y de no haber orden del cliente que indique lo contrario, la caja de bornes se suministra en la posición "A" (estándar).

The necessary parameters for choosing a reducer are:

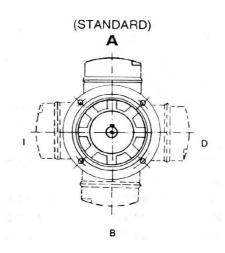
- Applicable motor power (KW or HP) (n₁=1400 rpm)
- R.p.m. needed at the exit of the reducer (n₂)
- Torque exit (Nm)
- Service factor (Sf)

With the parameters known, find the adequate reducer in choice tables.

At the time of ordering, this information should be included as well as the posicion, type of assembly and motor characteristics (selfbraking, single-phase, continuous current, flameproof, explosion proof, etc.)

If the reducer fitted for coupling with the (PAM) motor is ordered then the type of motor should be stated (63, 71, 80, etc.) stating axle and flange size.

In the motor reducers groups, the box of terminals is in opsition "A" (standard) unless the client specifies the opposite.


Les paramètres nécessaires au choix du réducteur sont:

- Puissance du moteur à àppliquer (KW ou HP) $(n_1=1400 \text{ rpm})$
- R.p.m. nécessaires à la sortie du réducteur (n₂)
- Couple sortie (Nm)
- Rapport de réduction (i)
- Facteur de service (FS)

Une fois ces paramètres connus, cherchez sur le tableau de sélection le réducteur appropié.

Au moment d'effectuer votre aommande, ces renseignements devront être indiqués ainsi que la position, forme de montage et caractéristiques du moteur (autoserreur, monophasé, courant continu, antidéflagrant, antiexplosif, etc.) Si vous demandez un réducteur préparé pour être accouplé au moteur (PAM) vous devrez indiquer le type de moteur (63, 71,80, etc.) en signalant les dimensions de l'arbre et la bride.

Dans les groupes moto-reducteurs et de ne pas il y avoir l'ordre du client qui indique la chose contraire, les provisions de terminaux de boîte dans la position "A" (la norme).

FACTOR DE SERVICIO/ SERVICE FACTOR/ FACTEUR DE SERVICE

Para la selección del grupo reductor es necesario adecuar el coeficiente con parámetros que se aproximen a las reales condiciones de trabajo. El cuadro siguiente incluye el valor indicativo del factor de servicio, en base al tipo de carga, al número de horas de funcionamiento y al número de arranques hora.

To choose a reducer it's necessary to calculate the coefficient with parameters that fit the real work conditions. The following table indicates the indicative value of the service factor, based on the type of load, the number of hours in operation and the number of start-ups per hour.

Pour le choix du groupe réducteur il est nécessaire d'adapter le coefficient à des paramètres qui s'approchent des conditions réelles de travail. Le tableau suivant inclut la valeur indicative du facteur de service, selon le type de charge, le nombre d'heures de fonctionnement et le nombre de mises en marche/heure.

Clase de carga	Arranques por hora		Horas funcio	namiento día				
Type of load	Start-ups per hour	Operational hours day						
Type de charge	Mises en marche/heure	Н	leures de fond	tionnement/jo	ur			
		< 2	2-8	9-16	17-24			
Uniforme (cargas uniformes, pequeñas masas a acelerar)	<10	0,8	1	1,25	1,5			
Uniform (uniform loads, small masses to speed up)	10-50	1	1,25	1,50	1,75			
Uniforme (charges uniformes, petites masses à accélérer)	50-100	1,25	1,5	1,75	2			
Variable (ligeras sobrecargas, condiciones irregulares,	<10	1	1,25	1,50	1,75			
medias masas a acelerar) /ariable (Slight overloads, irregular conditions,	10-50	1.25	4.5	1.75	2			
medium masses to speed up)	10-50	1,25	1,5	1,75	2			
Variable (surcharges lègères, conditions irrégulières, masses moyennes à accélerer)	50-100	1,5	1,75	2	2,25			
Sobrecarga (fuertes sobrecargas, cargas con choques,	<10	1,25	1,5	1,75	2			
grandes masas a acelerar)								
Overload (Strong overloads, loads with impact,	10-50	1,5	1,75	2	2,25			
arge masses to speed up)								
Surcharge (grande surcharge, charge avec chocs,	50-100	1,75	2-8	2,25	2,5			
grandes masses à accélérer)								

En el presente catálogo, donde no se contempla la potencia para velocidades n1 superiores a 1400 Rpm se puede deducir en base a los coeficientes del siguiente cuadro:

In the current catalogue, where the power for speeds n1 more than 1400 Rpm are not included, it can be calculated on the basis of the coefficients of the following table:

Dans ce catalogue, où l'on ne tient pas compte de la puissance pour des vitesses n1 supérieures à 1400 Rpm, on peut le déduire sur la base des coefficients du tableau suivant:

	Pote	encia
$\mathbf{n}_{_{\mathrm{I}}}$	Po	wer
	Puis	sance
1400	$HP_1 x$	
1800	HP ₁ x 1,15	Kw ₁ x 1,15
2200	HP ₁ x 1,25	Kw ₁ x 1,25
2800	HP ₁ x 1,6	Kw ₁ x 1,6

POTENCIA KW-HP

La potencia indicada en el catálogo, es referida a la entrada del reductor y en relación a la velocidad indicada n1 y con factor de servicio Fs=1

MOMENTO TORSOR EN LA SALIDA M2

El valor M_2 indicado en el catálogo es real y en su cálculo se ha tenido en cuenta el rendimiento del reductor.

Dicho valor deberá ser igual o superior al momento torsor necesario en el accionamiento de la máquina.

RELACIÓN DE TRANSMISIÓN

Los valores del catálogo representan las relaciones de transmisión, entre la velocidad de entrada y salida, y viene representada con la fórmula:

$$i=\frac{n_1}{n_2}$$

En los reductores de vis-sin-fin la relación es exacta, pero no así en los de engranajes coaxiales, cuyas relaciones son aproximadas. Para conocer el valor exacto consultar con nuestro Dpto. técnico.

CARGA RADIAL

Cuando sobre los ejes de entrada y salida de los reductores y variadores se ensamblan poleas, piñones, etc... se determinan cargas que se pueden deducir con la siguiente fórmula:

$$R = \frac{2000.M_2.k}{D}$$

Donde:

R= Carga radial

M2= Momento torsor (Nm) en el eje considerado.

D= Diámetro polea, engranaje, etc.

K= 1(piñón cadena) 1,25 (engranaje mod.) 1,5 (polea trapezoidal)

El valor obtenido no deberá ser superior en ningún caso al indicado en los cuadros de valores.

CARGA AXIAL

Es igual a 1/4 del valor de la carga radial.

(Para cargas superiores a las representadas en los cuadros consultar con nuestro Dpto. técnico).

POWER KW-HP

The power shown in the catalogue refers to the entrance reducer and in relation to the indicated speed, n_1 and with service factor FS=1.

WRENCHING TIME AT THE EXIT M2

The M_2 value shown in the catalogue is real and its calculation has taken into account the performance of the reducer.

This value should be the same as or more than the machine's time necessary in the machine's operation.

RELATION OF REDUCTION

The catalogue's values represent the transmission relations between the entrance and exit speed and is represented by the following formula:

$$i = \frac{n_1}{n_2}$$

In the trailing screw reducers the relation is exact, but not in those of the co-axial gears, whose relations are approximate. To find out the exact value, consult our technical Dept.

RADIAL LOAD

When pulleys and pinions are erected over the axles of the exit and entrance of reducers and variators, loads are determined by the following formula:

$$R = \frac{2000.M_2.k}{D}$$

Where:

R= Radial load

M₂= Wrenching time (Nm) in the specific axle.

D= Diameter of pulley, gear, etc.

K= 1 (chain pinion) 1.25 (gear module) 1.5 (vee strap pulley)

The value obtained should never be more than that indicated on the value tables.

AXIAL LOAD

Equals 1/4 of the value of the radial load.

PUISSANCE KW-HP

La puissance indiquée dans la catalogue fait réference à l'entrée du réducteur et est en rapport avec la vitesse indiquée n1. Son facteur de service est Fs=1.

MOMENT DE TORSION A LA SORTIE M2

La valeur M2 indiquée dans le catalogue est réelle et lón a tenu compte pour son calcul du rendement du réducteur.

Cette valeur devra être égale ou supérieure au moment de torsion nécessaire à la mise en marche de la machine.

RAPPORT DE REDUCTION

Les valeurs du catalogue représentent les rapports de transmission entre la vitesse entrée et sortie, représentés par la formule:

$$i=\frac{n_1}{n_2}$$

Pour les réducteurs à vis sans fin, le rapport es exact, à l'inverse de ceux des axes coaxiaux qui son approximatives. Pour connaître la valeur exacte, consultez notre service technique.

CHARGE RADIALE

Lorsque l'on asemble des poulies, des pignons, etc...sur les arbres de réception et d'accés des réducteurs et des variateurs, on détermine des charges que l'on peut déduire de la formule suivante:

$$R = \frac{2000.M_2.k}{D}$$

Oú:

R= $Charge\ radiale$

M2= Moment de torsion (Nm) sur l'axe considéré

D= Diamètre poulie, engrenage, etc. K=1(pignonChaîne)1,25(engrenag e mod.) 1,5(poulie courroie trapézoïdale)

CHARGE AXIALE

Elle est égale à 1/4 de la valeur de la charge radiale.

Instalación/Installation/Installation

Para efectuar una correcta instalación se aconseja seguir las siguientes indicaciones:

- asegurarse que en el transporte no haya sido dañado ningún elemento del grupo.
- Comprobar que el reductor venga de acuerdo con su solicitud de pedido.
- Fijar el reductor rígidamente sobre superficies planas o bien sobre los ejes huecos, evitando cualquier vibración.
- En ningún caso debe utilizarse una maza para montar o desmontar órganos en los ejes (poleas, piñones, etc) usar tirantes o extractores utilizando el agujero roscado del que van provistos los extremos de los ejes.
- Tolerancia ejes salientes j⁶
- Tolerancia ejes huecos H⁷
- El reductor en ningún caso debe ponerse en otra posición de trabajo que no sea la solicitada, cualquier variación debe consultarse con nuestro Dpto. técnico.
- Si en la instalación se prevén sobrecargas, golpes o bloqueos es aconsejable instalar limitadores de par mecánicos o electrónicos.
- Al instalar, prever distancia suficiente entre el ventilador motor y pared o chasis para garantizar la toma de aire para su refrigeración.
- Para instalaciones en ambientes húmedos o intemperie es aconsejable haber previsto la protección del reductor así como la del motor (IP 55 e IP 65)
- En aplicaciones con numerosas arrancadas, paradas e inversiones es aconsejable bloquear los tornillos de fijación.
- Los reductores con lubricación de por vida no necesitan mantenimiento, para los demas es necesario cambiar a las 300 ó 400 horas, y en los sucesivos, cada 3000 horas de funcionamiento.
- Debe evitarse la colocación de cualquier aceite no aconsejado, así como la mezcla de aceites minerales con sintéticos.
- En el caso de pintar el grupo debe protegerse los retenes así como los asentamientos mecanizados.

Gestión ambiental del producto: La normativa ambiental ISO 14001, recomienda seguir las siguientes indicaciones para el desguace de los reductores.

- Los componentes del grupo que sean para chatarra, deberán ser entregados a empresas de recogida autorizada para materiales mecánicos.
- Aceites o grasas, deberan ser entregados a centros de tratamiento.
- Palets, cartón o papel, han de ser entregados a empresas de reciclaje.

Instalación/Installation/Installation

To carry out a correct installation, it is advisable to follow the following instructions:

- · Ensure that no element of the equipment has been damaged in transport.
- Check that the reducer is the one requested on the order form.
- Fix the reducer firmly on flat surfaces or better, still directly onto the hollow axles, avoiding any vibrations.
- Under no circumstances should a mallet be used to assemble or disassemble parts in the axle (pulleys, pinions, ets) or use tie bars or extractors, using the threaded hole that is for the axle ends.
- Tolerance of protrunding axles j⁶
- Tolerance of hollow axles H⁷
- Under no circumstances should the reducer be used for any other purpose than that for which it has been ordered. For any variation should be discussed with our technical dept.
- If in the installation predicts overloads, blows or blockades is advisable to install mechanical or electronic restrictors of pair.
- To install, predict sufficient distance between the motor fan and wall or chassis to guarantee the motor takes enough air for its cooling.
- For installation in wet environments or elements is advisable to have predicted the protection of the reducer as well as the motor. (IP 55 & IP65)
- In applications with numerous starts, stops and investments is advisable to block the setscrew.
- The reducers with lubrication for life don't need maintenance, for the others is necessary to change every 300 or 400 hours, and in the succesive, every 3000 hours of operation.
- It should be avoided the placement of any oil not advised, as well as the mixture of mineral oils with synthetic.
- In the case of painting the group must be protected seals and machined settlements.

Environmental management of the product: The environmental regulation ISO 14001 recommends following the intructions below when scrapping the motor reducer.

- The parts for scrap need to be delivered to campanies authorised to collect metallic materials.
- Oils and greases need to be delivered in treatment centres.
- Wood, cardboard, plastic and paper need to be delivered to recycling companies.

Instalación/Installation/Installation

Afin déffectuer une installation correcte, il est conseillé de suivre les indications suivantes.

- Vérifiez qu'aucun élément du groupe n'ait subi de dommages pendant le transport.
- Vérifiez que le reducteur soit livré selon votre commande.
- Fixez le réducteur rigidement sur des surfaces planes ou directement sur les essieux creux à utilisier, en évitant toute vibration.
- N'utilisez en aucun cas une masse pour monter ou démonter des organes sur les arbres (poulies, pignons, etc)
 Aidez-vous de tirants ou extracteurs en utilisant le trou fileté des extrémités des arbres.
- Tolérance essieux sortants j⁶
- Tolérance essieux creux H⁷
- Le reducteur ne doit en aucun cas être placé dans une autre position de trvail que celle indiquée sur votre commande, toute variation devant être consultée avec votre Service Technique.
- Si dans l'installation prédit des surchargues, les coups ou les blocus sont judicieux pour installer mécanique ou électronique restrictors de paire.
- Pour installer, prédire que la distance suffisante entre le ventilateur et le mur ou le châssis moteur a fin de garantir la prise d'air nécessaire à son refroidissement.
- Pour les intallations en milieu humide, il est conseillé de prévoir la protection du réducteur tout comme celle du moteur (IP 55 ou IP 65)
- Dans les applications òu il y a de nombreux marche arrêt ou inversions de sens de marche, il est conseillé de bloquer les vis de fixation.
- Les réducteurs avec lubrification "a vie" n'ont pas besoin d'entretien, pour les autres, il est nécessaire de changer l'huile à 300 ou 400 heures, puis chaque 3000 heures de fonctionnement.
- Il en faut pas mettre de l'huile non conseillé ni un mélange d'huile minérale avec de l'huile synthétique.
- Dans le cas oû le groupe devrait être peint, il faut protéger les renforts ainsi que les surfaces fonctionnelles.

Gestion envinnementale du produit: La norme ISO 14001, recommande de suivre les indications suivantes pour la destruction des réducteurs.

- Les composants du groupe devront être remisà une entreprise autorisée pour la collecte de matériels métalliques.
- Les pétroles ou la graisse, ils devraient être livrés aux centres de traitement.
- Les palettes et emballages (carton ou papier) devron être livré à des centres de recyclage.

Temperature/Temperature

Hay diversos factores que inciden en la temperatura de los reductores:

- Tipo de cinematica
- · Cantidad y tipo de lubricante
- · Velocidad, potencia aplicada etc.

Hay que resaltar la diferencia que existe entre un reductor de vis-sin-fin y otro de engranajes, por lo que podemos considerar como temperatura normal:

- Reductor vis-sin-fin: 50~60°C
- Reductor engranajes: 30~40°C

Estos coeficientes pueden verse aumentados en dependencia de la velocidad angular, posición de trabajo, etc.

En el caso de que el cliente acople un motor de velocidad inferior o superior a 1400 rpm debe indicarse en el momento de cursar pedido, para prever la carga de aceite correcta.

There are different factors that influence the reducer's temperature:

- Type of kinematics
- · Quantity and type lubricant
- Speed and power applied, etc

The difference that exists between a trailing screw reducer and a geared one must be highlighted in reference to what we consider as a normal temperature:

- Trailing screw reducer: 50~60°C
- Geared reducer: 30~40°C

These coefficients may be increased according to the angular speed, position of work, etc.

In the case that the client adapt motor of lower velocity or over 1400 rpm should be indicated at the moment to predict the load of correct oil.

Il y a différents facteurs qui influencent la température des réducteurs

- Type de cinématisme
- Quantité et type de lubrifiant.
- Vitesse, puissance appliquée, etc.

Il faut souligner la différence existant entre un réducteur à vis-sans-fin et un autre à engrenages, ce qui nous permet de considérer comme température ambiante:

- Réducteur à vis sans fin: 50~60°C
- Réducteur à engranages: 30~40°C

Ces coefficients peuvent augmenter selon la vitesse angulaire, la position de travail, etc.

Dans le cas où le client souhaite adapter le moteur à une vitesse inférieure ou supérieure à 1400 rpm, il faudra l'indiquer lors de la commande, afin de prévoir la quantité d'huile correcte.

Lubricación/lubrication/lubrification

Reviste una notable importancia para alcanzar las prestaciones óptimas de los reductores por lo cual es importante recordar que un nivel muy alto de lubricante y una elevada viscosidad del mismo, contribuyen a reducir el rendimiento especialmente en los reductores de engranajes con elevada velocidad.

En los reductores de vis-sin-fin es indispensable utilizar lubricantes más viscosos para así garantizar la presencia de una película lubricante más resistente. Es de suma importancia evaluar las condiciones ambientales en las cuales trabajará el reductor, ya que los factores como la temperatura son fundamentales para la elección del correcto tipo de lubricante y de su viscosidad.

It is very important for the reducers to give their best performance, so that if there is a very high lubrication level and that lubricant has a high level of viscosity, performance may be reduced, specially in high speed geared reducers.

In trailing screw reducers it is absolutely necessary to use lubricants of high viscosity in order to guarantee the presence of a more resistant lubricating film. It is also very important to take into account the atmospheric conditions in which the reducer is operating, since factors such as temperature are fundamental when choosing the correct type of lubricant and its viscosity.

Elle est trés importante pour atteindre les performances optimales des réducteurs. Il en faut donc pas oublier qu'un très haut niveau de lubrifiant et une viscosité élevée de celui-ci contribuent à en réduire le rendement, surtout pour les réducteurs à engrenages ayant une vitesse élevée.

Pour les réducteurs à vis sans fin, il est indispensable d'utiliser des lubrifiants plus visqueux afin de garantir la présence d'une pellicule lubrifiante plus résistante. Il est fondamental de tenir compte des conditions ambiantes dans lesquelles travaillera le réducteur, car des facteurs comme la température sont capitaux pour le choix du type approprié de lubrifiant et de sa vscosité.

Motorreductores de vis-sin-fin/ Worm geared motors/ Motorreducteurs de vis-sans-fin

Pot.: Desde 0,06 Kw a 9 Kw Rel.: Desde 1/5 a 1/100

Pot.: Desde 0,06 Kw a 9 Kw Rel. Desde 1/5 a 1/100

Pot.: Desde 0,12 Kw a 7,5 Kw Rel.: Desde 1/5 a 1/100

Pot.: Desde 0,09 Kw a 1,8 Kw Rel.: Desde 1/175 a 1/800

Pot.: Desde 0,09 Kw a 1,8 Kw Rel.: Desde 1/175 a 1/800

Serie K/ Series K/ Série K

El reductor de la serie K está construido con carcasa de aluminio inyectado hasta el tipo 90 y de fundición gris los tipos 110 y 130.

Su moderno diseño permite la rápida disipación del calor.

- Tornillo sin-fin: Construido con acero estampado al (Cr-N1-MO) tratado térmicamente y con perfil
 rectificado. Su hélice es a derecha, sobre demanda puede fabricarse con hélice a izquierda, así como con doble
 salida de eje.
- Corona: Construida en una aleación de bronce centrifugado (Cu-Sn) en porcentajes idóneos para conseguir elevadas capacidades de carga, resistencia al desgaste y máximo rendimiento, debidamente tallada para su perfecto acoplamiento al vis-sin-fin, lo que permite obtener un alto rendimiento en la transmisión.
 - La corona va montada sobre eje hueco de fundición GJS 400-15, y sobre demanda se suministra con el eje de salida simple o doble.
- Rodamientos: Radiales hasta el tamaño 63 y de rodillos cónicos hasta el tipo 130.
- Retenes: De goma sintética y sobradamente dimensionados para soportar la presión interna (aceite o grasa) pueden soportar temperaturas de -40°C hasta 120°C.
- Lubricación: Los grupos hasta el tipo 110 van lubricados de por vida con aceite sintético, el tipo 130 con aceite mineral, debiendo efectuar mantenimiento.
 - En las primeras horas de funcionamiento la temperatura puede alcanzar valores más altos de lo normal.
 - El lubricante sintético, incorporado en los grupos puede usarse en ambientes con temperaturas de -25°C hasta 80°C.

En la serie MK, los motores son normalizados en brida y eje, según normas DIN 42677.

The series K reducer is built with an injected aluminium casing of up to type 90, and of machinery iron G-20 to types 110-130.

Its design allows fast heat dissipation

- Trailing screws: Built with moulded steel of (Cr-Ni-Mo), heat treated and with adjusted structural chape. Its thread is right leaning, but can be ardered in left leaning too, as well as with double exit axle.
- Drivewheel: Built of centrifugal bronze alloy (Cu-Sn) in percentatges ideal for achieving high load capacities, wear resistance and maximum performance. Carefully cut for perfect coupling to trailing screw, thus obtaining high transmission performance.
 - The drivewheel goes mounted on hollow axis of loundry GJS 400-15, and on demand supplies with the simple or double axis exit.
- Bearings: Radials to the size 63 and of conical rollers to the type 130.
- Washers: Made of synthetic rubber and designed to withstand interior pressure (oil or grease) and can support temperatures from -40 $^{\circ}$ C to 120 $^{\circ}$ C.
- Lubrication: The groups until the type 110 are lubricated for life with synthetic oil, and the type 130 is lubricated with mineral oil and therefore require maintenance.
 - During the first operation hours, the temperature may reach higher values than normal ones.
 - The synthetic lubricant included in the groups can be used in environments with temperatures going from -25°C to 80°C.

In the series MK, the axle and flange are standardised according to the regulation DIN 42677.

Serie K/Series K/Série K

Les réducteurs de la série K sont construits avec des carcasses en aluminium injecté jusqu'au type 90 et en fonte gris G-20 les types 110 et 130.

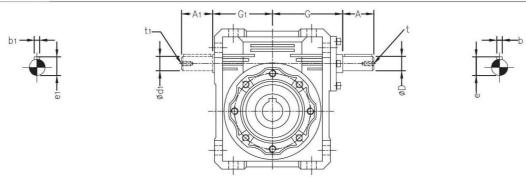
Leur moderne profil permet à la chaleur de se dissipier trés rapidament à l'intérieur.

- *Vis sans fin: Construite en acer estampé au* (Cr-Ni-Mo) traité à la chaleur et ayant un profil rectifié, son hélice est à droite, sur commande, elle peut etre fabriquée à gauche, ainsi qu'avec une double réception de l'arbre.
- Couronne: Construite en alliages de bronze centrifugé (Cu-Sn) dans des pourcentages idéaux pour atteindre
 des capaciés de charge élevées, une résistance à l'usure et un rendement maximum, taillée de façon à
 s'accoupler parfaitement sur la vis sans fin, ce qui permet d'obtenir un grand rendement dans la transmission.
 - Le couronne va monté sur l'axe creux de GJS de fonderie 400-15, et sur les provisions de demande avec la sortie d'axe simple ou doble.
- Roulements: Radial à la taille 63 et de cylindres coniques au type 130.
- Joints d'etancheite: en caoutchouc synthétique et largement dimensionnés pour supporter la pression intérieure (huile ou graisse), ils peuvent supporter des températures de jusqu'à -40°C et 120°C
- La lubrification: Les groupes jusqu'à ce que le type 110 sont lubrifiés pour la vie avec le pétrole synthétique, et le type 130 sont lubrifiés avec le pétrole minéral et exigent donc l'entretien.
 - Pendant les premières heures de fonctionnement, la température peut atteindre des valeurs plus élevées que d'habitude.

Les lubrifiants synthétiques, incorporés dans les groupes peuvent *être* utilisés dans les environnements avec les températures de -25°C à 80°C

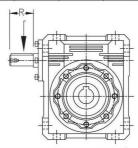
Dans le MK de feulleton, les moteurs sont normalisés dans la bride et l'axe, selon le VACARME de normes 42677.

MODELOS CON ÁRBOL DE ENTRADA SIMPLE Y DOBLE

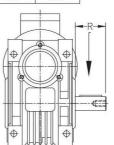

Serie

Series

SINGLE AND DOUBLE INPUT SHAFT MODEL


Dimensiones

Dimensions


Modelo	А	A ₁	D j6	d1 j6	t	t1	е	e1	b	b1	G	G1
30	20	20	9	9	-	-	10,2	10,2	3	3	51	45
40	23	23	11	11	-	-	12,5	12,5	4	4	60	53
45	23	23	11	11	-	-	12,5	12,5	4	4	60	53
50	30	30	14	14	M.6	M.6	16	16	5	5	74	64
63	40	40	19	19	M.6	M.6	21,5	21,5	6	6	90	75
75	50	50	24	24	M.8	M.8	27	27	8	8	105	90
90	50	50	24	24	M.8	M.8	27	27	8	8	125	108
110	60	60	28	28	M.10	M.10	31	31	8	8	142	135
130	80	80	30	30	M.10	M.10	33	33	8	8	162	155

Carga radial "R" máxima admisible eje entrada Maximum permitted radial load "R" in entrance axle

n ₁				F	rı (da Nr	n)			
rpm	30	40	45	50	63	75	90	110	130
1400	6	22	22	32	42	50	70	103	160
900	6	25	25	35	46	53	80	121	180
700	7	28	28	40	50	57	90	130	201
500	7	31	31	45	53	60	100	145	221

Carga radial "R" máxima admisible en el eje de salida Maximum permitted radial load "R" in exit axle

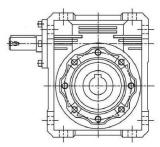

n ₂				F	r₂(da Nr	n)			
n ₂ rpm	30	40	45	50	63	75	90	110	130
187	67	129	136	177	235	277	307	388	508
140	75	143	149	198	256	301	337	425	557
93	85	163	172	227	298	352	384	487	638
70	91	180	187	249	326	385	425	536	706
56	101	196	205	268	350	415	458	577	762
47	105	205	210	285	372	440	488	615	810
35	117	225	232	315	410	485	535	678	889
28	128	247	302	338	441	520	578	730	957
23	135	260	268	359	473	557	615	775	1020
17	147	287	293	395	516	615	675	855	1125
14	_	310	315	425	562	658	728	921	1205

TABLA DE SELECCIÓN

SELECTION TABLE

Serie Series

K-75 K-	K-75 Kw	K-75 Nm						Similar III	- None						
K-75 Kw=	K-75 Kw	K-75 K-	Modelo		7,5	10		20	25	30	40	50		80	
Name	Name	Name 186	Modelo	i=	7.5	10	15	20	25	30	40	50	60	80	100
Name	Name	Name													
Name	Name	Name				,				,					1
Name	Name	Name			0,00	0,01	0,01	0,11	0,10	0,71	0,00	0,02	0,0	0,00	0,10
Name	Name	Name		11-	0,00	0,04	0,01	0,11	0,73	0,71	0,00	0,02	0,0	0,55	0,43
Name	Name	Name	_	n=	0,86	0,84	0,81	0,77	0,73	0,71	0,00	0,62	0,6	0,53	0,49
Name	Name	Name		n=	0,86	0,84	0,81	0,77	0,73	0,71	0,66	0,62	0,6	0,53	0,49
Name	Name	Name		n=	0,86	0,84	0,81	0,77	0,73	0,71	0,66	0,62	0,6	0,53	0,49
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 17 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84<	Modelo i= 7,6 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0.85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0.85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225	Modelo i	11.00												
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 17 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84<	Modelo i= 7,6 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0.85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0.85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225	Modelo i	N-63												
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 471,3 176 235 245 240 312 306 256 220 195 17 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0.4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84 </td <td>Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225</td> <td> Modelo i</td> <td>K-63</td> <td>Nm=</td> <td>115</td> <td>135</td> <td>133</td> <td>125</td> <td>135</td> <td>132</td> <td>136</td> <td>130</td> <td>125</td> <td>108</td> <td>87</td>	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225	Modelo i	K-63	Nm=	115	135	133	125	135	132	136	130	125	108	87
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 471,3 176 235 245 240 312 306 256 220 195 17 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0.4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84 </td <td>Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225</td> <td> Modelo i</td> <td>K-63</td> <td>Nm=</td> <td>115</td> <td>135</td> <td>133</td> <td>125</td> <td>135</td> <td>132</td> <td>136</td> <td>130</td> <td>125</td> <td>108</td> <td>87</td>	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225	Modelo i	K-63	Nm=	115	135	133	125	135	132	136	130	125	108	87
Name	Name	Name	K-63	Nm=	115	135	133	125	135	132	136	130	125	108	87
Name	Name	Name	K-63	170.50											
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name		rw=			1,7			1		0,65	0,55	0,37	
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name		Kw=	2,9	2,4	1,7	1,3	1,1	1	0,75	0,65	0,55	0,37	0,3
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name		Kw=	2,9	2,4	1,7	1,3	1,1	1	0,75	0,65	0,55	0,37	0,3
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0	Modelo i		Kw=	2,9	2,4	1,7	1,3	1,1	1	0,75	0,65	0,55	0,37	0,3
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0	Modelo i		KW=	2,9	2,4	1,7	1,3	1,1	1	0,75	0,65	0,55	0,37	0,3
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name		KW=	2,9	2,4	1,7	1,3	1,1	1	0,75	0,65	0,55	0,37	0,3
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name		rw=			1,7		1,1	П		0,00	0,55	0,37	0,3
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name		170.50										10000000	
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name	K 62	170.50										10000000	
N= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0.4	Name	Name	K-63	Nm=	115	135	133	125	135	132	136	130	125	108	87
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 471,3 176 235 245 240 312 306 256 220 195 17 n= 0.85 0.84 0.78 0.76 0.74 0.71 0.64 0.63 0.6 0.52 0.4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84 </td <td>Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225</td> <td> Modelo i</td> <td>K-63</td> <td>Nm=</td> <td>115</td> <td>135</td> <td>133</td> <td>125</td> <td>135</td> <td>132</td> <td>136</td> <td>130</td> <td>125</td> <td>108</td> <td>87</td>	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 Nm= 241,8 225	Modelo i	K-63	Nm=	115	135	133	125	135	132	136	130	125	108	87
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 17 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84 </td <td> Modelo i</td> <td> Modelo i</td> <td>N-03</td> <td>Nm=</td> <td></td>	Modelo i	Modelo i	N-03	Nm=											
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 17 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84 </td <td> Modelo i</td> <td> Modelo i</td> <td>_</td> <td></td>	Modelo i	Modelo i	_												
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 17 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84 </td <td>Modelo i= 7,6 10 15 20 25 30 40 50 60 80 1 n₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 43,3 3,3 2,2 2,2 2,2 1,1 1,1 1 0,8 0 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n₂ 186 140 94 70 56 47 35 28 23,3 18 1 K-90 Nm= 241,8 225 333,5 <td< td=""><td> Modelo i</td><td></td><td>n=</td><td>0,86</td><td>0.84</td><td>0,81</td><td>0.77</td><td>0.73</td><td>0.71</td><td>0.66</td><td>0,62</td><td>0.6</td><td>0.53</td><td>0.49</td></td<></td>	Modelo i= 7,6 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-75 Nm= 43,3 3,3 2,2 2,2 2,2 1,1 1,1 1 0,8 0 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 1 K-90 Nm= 241,8 225 333,5 <td< td=""><td> Modelo i</td><td></td><td>n=</td><td>0,86</td><td>0.84</td><td>0,81</td><td>0.77</td><td>0.73</td><td>0.71</td><td>0.66</td><td>0,62</td><td>0.6</td><td>0.53</td><td>0.49</td></td<>	Modelo i		n=	0,86	0.84	0,81	0.77	0.73	0.71	0.66	0,62	0.6	0.53	0.49
n₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 177 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 K-90 n² 186 140 94 70 56 47 35 28 23,3 18 14 K-90 nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 </td <td> Name</td> <td> Name Name </td> <td></td> <td>n=</td> <td>0,86</td> <td>0,84</td> <td>0,81</td> <td>0,77</td> <td>0,73</td> <td>0,71</td> <td>0,66</td> <td>0,62</td> <td>0,6</td> <td>0,53</td> <td>0,49</td>	Name	Name		n=	0,86	0,84	0,81	0,77	0,73	0,71	0,66	0,62	0,6	0,53	0,49
n₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 177 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 n= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 0,84<	Name 186	Name 186			-1					-1.	.,	-,	-1-		
n₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 177 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 K-90 n² 186 140 94 70 56 47 35 28 23,3 18 14 K-90 nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 </td <td> Name</td> <td> Name Name </td> <td></td> <td></td> <td></td> <td>ī</td> <td>I</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Name	Name				ī	I		1						
n₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 177 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 K-90 n² 186 140 94 70 56 47 35 28 23,3 18 14 K-90 nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 n= 0,86 </td <td> Name</td> <td> Name Name </td> <td>Modelo</td> <td>i=</td> <td>7,5</td> <td>10</td> <td>15</td> <td>20</td> <td>25</td> <td>30</td> <td>40</td> <td>50</td> <td>60</td> <td>80</td> <td>100</td>	Name	Name	Modelo	i=	7,5	10	15	20	25	30	40	50	60	80	100
Kw	K-75 Kw= 4 3,3 3,3 2,2 2,2 2,2 1,1 1,1 1 0,8 0 Nm= 171,3 176 235 245 240 312 306 256 220 195 1 n= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 i= 7,5 10 15 20 25 30 40 50 60 80 1 K-90 i= 7,5 4 4 3 3 3 2,8 2,2 1,1<	Kw 4 3,3 3,3 2,2 2,2 2,2 1,1 1,1 1 1 0,8 Nm 171,3 176 235 245 240 312 306 256 220 195 n 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 Modelo i						Similar III	- None						
Kw	Kw	Kw 4 3,3 3,3 2,2 2,2 2,2 1,1 1,1 1 0,8 171,3 176 235 245 240 312 306 256 220 195 1		n ₂	186	140	94	70	56	47	35	28	23,3	18	14
K-75 Nm=	K-75	K-75 Nm= 171,3 176 235 245 240 312 306 256 220 195 m= 0,85 0,84 0,78 0,76 0,74 0,71 0,64 0,63 0,6 0,52 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 Kw= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,1 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 n= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 Modelo i= 7,5 10 15 20 25 30 40 50 <t< td=""><td></td><td></td><td>MATS SHOOT</td><td>70.700.00</td><td>7637-76</td><td>377.50</td><td>1000000</td><td>107.00</td><td>2001000</td><td>10000000</td><td></td><td></td><td>200000</td></t<>			MATS SHOOT	70.700.00	7637-76	377.50	1000000	107.00	2001000	10000000			200000
Nodelo i = 7,5 10 15 20 25 30 40 50 60 80 10	Nodelo i = 7,5 10 15 20 25 30 40 50 60 80 10	Nodelo i = 7,5 10 15 20 25 30 40 50 60 80 Nm		Kw=	4	3,3	3,3	2,2	2,2	2,2	1,1	1,1	1	0,8	0,7
Name	Nodelo i = 7,5 10 15 20 25 30 40 50 60 80 10 10 10 10 10 10 1	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 Kw= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,1 K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 n= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 K-110 Mm= 525 532 560 647 690 645 691 632 595 525 m= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,7	V 75	1700,500m2											
Modelo i= 7,6 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 5,5 4 4 3 3 3 2,8 2,2 1,1	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-90 Nm= 5,5 4 4 3 3 3 2,8 2,2 1,1	Modelo i= 7,5 10 15 20 25 30 40 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-90 Nm= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,1 M-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 m= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-110 15 20 25 30 40 50 60 80 n= <th< td=""><td>K-75</td><td>Nm=</td><td>171,3</td><td>176</td><td>235</td><td>245</td><td>240</td><td>312</td><td>306</td><td>256</td><td>220</td><td>195</td><td>170</td></th<>	K-75	Nm=	171,3	176	235	245	240	312	306	256	220	195	170
Modelo i= 7,6 10 15 20 25 30 40 50 60 80 10 n_2 186 140 94 70 56 47 35 28 23,3 18 14 K-90 Nm= 5,5 4 4 3 3 3 2,8 2,2 1,1	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-90 Nm= 5,5 4 4 3 3 3 2,8 2,2 1,1	Modelo i= 7,5 10 15 20 25 30 40 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-90 Nm= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,1 M-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 m= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-110 15 20 25 30 40 50 60 80 n= <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>200</td></th<>													200
Name 140 94 70 56 47 35 28 23,3 18 14	Name 10,2 186 140 94 70 56 47 35 28 23,3 18 18 18 18 18 18 18 1	Name 10,2 186 140 94 70 56 47 35 28 23,3 18		n=	0,85	0,84	0,78	0,76	0,74	0,71	0,64	0,63	0,6	0,52	0,48
Name 140 94 70 56 47 35 28 23,3 18 14	Name 10,2 186 140 94 70 56 47 35 28 23,3 18 18 18 18 18 18 18 1	Name 10,2 186 140 94 70 56 47 35 28 23,3 18													
Name 186	Name 10,2 186 140 94 70 56 47 35 28 23,3 18 18 18 18 18 18 18 1	Name 10,2 186 140 94 70 56 47 35 28 23,3 18	Modelo	i=	7.5	10	15	20	25	30	40	50	60	80	100
K-90 Kw= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,2 1,2 1,2 1,2	Kw= 5,5 4 4 3 3 2,8 2,2 1,1	Kw= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,1 1,1 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 n= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 Wodelo i= 7,5 10 15 20 25 30 40 50 60 80 Modelo n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-110 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Wodelo i= 7,5 10 15 20 25 30 40	viodelo		1,5	10	10	20	25	30	40	50	60	00	100
K-90 Kw= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,2 1,2 1,2	K-90 Kw= 5,5 4 4 3 3 3 2,8 2,2 1,1	K-90 Kw= 5,5 4 4 3 3 3 2,8 2,2 1,1 1,1 1,1 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 n= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 K-110 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40		n,	186	140	94	70	56	47	35	28	23.3	18	14
K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 452 m= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0,4 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 K-110 Nm= 525 532 560 647 690 645 691 632 595 525 460 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 k 4	K-90 Nm= 241,8 225 333,5 319,2 406 418 463 567,3 304,3 343,7 45 n= 0,86 0,84 0,81 0,77 0,73 0,71 0,66 0,62 0,6 0,53 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 K-110 Nm= 525 532 560 647 690 645 691 632 595 525 4 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 Modelo i= 7,5 <t< td=""><td> Nm</td><td></td><td></td><td></td><td></td><td>22.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Nm					22.5								
Nodelo i	Nodelo i	Node o i		Kw=	5,5	4	4	3	3	3	2,8	2,2	1,1	1,1	1,1
Nodelo i	Nodelo i	Node o i	K 90			225		240.2	400						
Modelo i	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Modelo i	K-90	Nm=	241,8		333,5	319,2	406	418	463	567,3	304,3	343,7	452,7
Modelo i	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Modelo i		n=	0.86	0.84	0.81	0.77	0.73	0.71	0.66	0.62	0.6	0.53	0.49
n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 1,7 Nm= 525 532 560 647 690 645 691 632 595 525 460 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Wodelo i= 7,5 10 15 20 25 30 40 50 60 80 100 m ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890	Nm	n2 186 140 94 70 56 47 35 28 23,3 18 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Wodelo i= 7,5 10 15 20 25 30 40 50 60 80 n2 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080		11-	0,00	0,04	0,01	0,11	0,73	0,71	0,00	0,02	0,0	0,55	0,43
n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 1,7 Nm= 525 532 560 647 690 645 691 632 595 525 460 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 r ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 m ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080													
n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 1,7 Nm= 525 532 560 647 690 645 691 632 595 525 460 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 r ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 m ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080	Modelo	i=	7.5	10	15	20	25	30	40	50	60	80	100
K-110 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 1,1 Nm= 525 532 560 647 690 645 691 632 595 525 469 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 m_2 186 140 94 70 56 47 35 28 23,3 18 14 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 1 Nm= 525 532 560 647 690 645 691 632 595 525 4 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n_2 186 140 94 70 56 47 35 28 23,3 18 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080	,,,,,,	300											
K-110 Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 1,1 Nm= 525 532 560 647 690 645 691 632 595 525 469 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 m_2 186 140 94 70 56 47 35 28 23,3 18 14 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 1 Nm= 525 532 560 647 690 645 691 632 595 525 4 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n_2 186 140 94 70 56 47 35 28 23,3 18 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	Kw= 10,2 9 6,5 5,7 5,2 4,5 3,5 2,7 2,2 1,5 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080		n ₂	186	140	94	70	56	47	35	28	23.3	18	14
K-110 Nm= 525 532 560 647 690 645 691 632 595 525 468 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	K-110 Nm= 525 532 560 647 690 645 691 632 595 525 4 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n= 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	K-110 Nm= 525 532 560 647 690 645 691 632 595 525 n= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080									-				
m= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	m= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	m= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080		rw=	10,2	9	0,5	5,7	5,2	4,5	3,5	2,1	2,2	1,5	1,1
m= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0,6 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 100 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	m= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 0 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	m= 0,88 0,87 0,84 0,83 0,8 0,76 0,73 0,71 0,7 0,66 Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080	K-110	Nm=	525	532	560	647	690	645	691	632	595	525	469
Modelo i= 7,5 10 15 20 25 30 40 50 60 80 10 n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 1 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	Modelo i= 7,5 10 15 20 25 30 40 50 60 80 n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080	_												
n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080		n=	0,88	0,87	0,84	0,83	0,8	0,76	0,73	0,71	0,7	0,66	0,61
n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080				,					0)				
n ₂ 186 140 94 70 56 47 35 28 23,3 18 14 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	n ₂ 186 140 94 70 56 47 35 28 23,3 18 Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080	Madela	1_	7 5	40	AE	20	25	20	40	EO	00	00	400
Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080	viodelo	I=	7,5	10	15	20	25	30	40	50	60	80	100
Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	Kw= 12,5 9,2 9,2 8,2 7,5 7,5 7,5 5 4 2,2 K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080		n.	186	140	QΛ	70	56	47	35	28	23.3	18	14
K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 101	K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080 11	K-130 Nm= 819 559 225 890 1074 1228 1596 1120 1195 1080													
				Kw=	12,5	9,2	9,2	8,2	7,5	7,5	7,5	5	4	2,2	2,2
			K-130	Nine=	810	550				1229		1120	1105		1010
n= 0.86 0.85 0.83 0.82 0.9 0.9 0.74 0.74 0.7 0.67 0.67	n= 0.86 0.85 0.83 0.82 0.8 0.8 0.74 0.74 0.7 0.67 0.	0.00 0.00 0.00 0.00 0.00 0.74 0.74 0.77 0.07	11-100												
n- 0,00 0,00 0,00 0,02 0,0 0,0 0,14 0,71 0,7 0,07 0,3	n= 0,00 0,00 0,00 0,02 0,0 0,0 0,14 0,11 0,1 0,01 0	n= 0,86 0,85 0,83 0,82 0,8 0,8 0,74 0,71 0,7 0,67		n=	0,86	0,85	0,83	0,82	0,8	0,8	0,74	0,71	0,7	0,67	0,56

K-150

 n_2

Kw=

Nm=

186

18

1200

0,91

140

18

1200

0,9

94

15

1300

0,88

70

11

1320

0,83

56

7,5

1200

0,8

47

7,5

1560

0,8

35

7,5

1560

0,78

28

5,5

1420

0,76

23,3

5,5

1298

0,73

18

4

1200

0,68

14

3

1100

0,65

Serie

KM

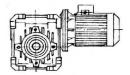


Tabla de selección REDUCTORES VIS-SIN-FIN

Selection table

TRAILING SCREW REDUCERS

n₄=1400rpm

CV	K.W.	i=	n ₂ Rpm	M ₂ (Nm)	fs	n	Modelo	Motor	Peso
0,08	0,06	5	280	2,2	4,5	0,86			
		7,5	186	2,7	4,2	0,84			
		10	140	3,5	3,5	0,82		50-E	2,9
		15	94	4,9	2,5	0,78			
		20	70	6,2	2	0,75	KM-25		
		30	47	8,3	1,6	0,66			
		40	35	10,2	1,3	0,6		56	3,8
		50	28	11,3	0,9	0,6			
		60	23,3	11	0,7	0,6			
0,12	0,09	5	280	3,2	3,2	0,86			
		7,5	186	3,9	2,8	0,84			
		10	140	5,2	2,5	0,82			
		15	94	7,3	1,9	0,78	KM-25	56	3,8
		20	70	9,2	1,3	0,75			
		30	47	12,3	1,1	0,66			
		40	35	13	0,9	0,6			
0,08	0,06	5	280	3,7	4,8	0,86			
		7,5	186	3,9	4,9	0,84			
		10	140	3,9	3,9	0,82			
		15	94	5,3	2,9	0,78		50-E	4
		20	70	6,5	2,4	0,75			
		25	56	7,7	3,1	0,79	KM-30		
		30	47	8,7	1,6	0,66			
		40	35	10,7	1,4	0,65		56	4,6
		50	28	11,8	1,4	0,6			
		60	23,3	12,5	1,3	0,6			
		80	18	13,5	1,2	0,6			
0,12	0,09	5	280	3,7	4,8	0,86			
		7,5	186	3,9	4,6	0,84			
		10	140	5	3,7	0,82			
		15	94	9,6	2,6	0,78			
		20	70	9	2	0,75	1/11 00		
		25	56	10,4	2,8	0,79	KM-30	56	4,6
		30	47	12	1,2	0,66			
		40	35	14,5	1,2	0,65			
		50	28	16,9	1,1	0,6			
		60	23,3	16,9	1	0,6			
0.40	0.40	80	18	13,5	0,7	0,6			
0,16	0,12	5	280	4,7	3,5	0,86			
		7,5	186	5,2	3,4	0,84			
		10	140	6,8	2,8	0,82	1/17.00		
		15	94	4,6	1,9	0,78	KM-30	63	5,4
		20	70	12,5	1,6	0,75			
		25	56	14,1	1,5	0,79			
		30	47	16,2	1,4	0,66			
		40	35	17,3	0,9	0,65			

Motor no estándar

Serie

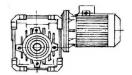


Tabla de selección $_{\rm REDUCTORES\ VIS-SIN-FIN}$

Selection table TRAILING SCREW REDUCERS

n.=1400rpm

CV	K.W.	i=	n ₂ Rpm	M ₂ (Nm)	fs	n	Modelo	Tipo Motor	Kg Peso
0,16	0,12	30	47	18	2,7	0,68			
	,	40	35	21,5	2	0,61			
		50	28	25,6	1,5	0,58	KM-40	63	6,3
		60	23,3	28,9	1,4	0,56			
		80	18	34,1	1	0,5	_		
		100	14	38,3	0,8	0,4			
		60	23,3	31,2	2,4	0,6			
		80	18	37,3	2	0,52	KM-50	63	7,5
		100	14	42,8	1,4	0,47			
0,25	0,18	5	280	7,5	2,6	0,86			
		7,5	186	8,2	2,4	0,84			
		10	140	10,3	1,9	0,82	KM-30	63	5,7
		15	94	14	1,4	0,78			
		20	70	18,1	1,1	0,75			
		25	56	20,2	1	0,7			
		5	280	7,7	4,3	0,86			
		7,5	186	8,8	4,1	0,85			
		10	140	11,2	3	0,83			
		15	94	14,9	2,8	0,78			
		20	70	19,3	2,1	0,75			
		25	56	23,2	1,8	0,73	KM-40	63	6,4
		30	47	26,3	1,8	0,68			
		40	35	32,2	1,3	0,61	-		
		50	28	38,2	1,1	0,58	-		
		60	23,3	43,3	0,9	0,56			
		80	18	54	0,55	1,2	KM-50	63	6,7
		100	14	56	0,52	0,9	_		-,-
0,33	0,25	5	280	8,7	2,4	0,86			
-,	-,	7,5	186	9,3	2,2	0,84	-		
	10 140 11,9 1,9 15 94 17,6 1,4					0,82	KM-30	63-E	5,8
			0,78			,			
		5	280	9,2	3,8	0,86		63-E	
		7,5	186	11,5	3,6	0,85	-		
		10	140	14,3	2,9	0,83	KM-40	71	7,6
			10 140 15 94	21,6 2 0	0,78	ASSOCIATION CONTRACTOR		-,-	
		20	70	26,7	1,5	0,75			
		25	56	32,5	1,2	0,73	KM-45		7,7
		30	47	37,5	1,3	0,68	1411 10		.,.
		40	35	45,5	0,8	0,61			
		50	28	54,2	1,5	0,63			
		60	23,3	61,3	1,2	0,6	KM-50	71	8,7
		80	18	65,8	1	0,52	1		٥,.
		100	14	85	1,4	0,49	KM-63	71	11,5
0,5	0,37	5	280	15	2,6	0,45	7411 00		. 1,0
-, -	-,	7,5	186	17,2	2,4	0,85	-		
		10	140	21,6	1,9	0,83	KM-40	71	8,4
		15	94	31	1,3	0,78	7011-70		٠,٠
		20	70	39,5	1,1	0,75			
		25	56	48	0,8	0,73	KM-45		8,5
		30	47	55	0,8	0,73	1411-40		0,0
		40	35	56	0,7	0,61	-		
		50	28	54,2	1,5	0,63	KM-50	71	9,6
		60		61,3			VIAI-20	7.1	3,0
		80	23,3 18	79	1,2 1,6	0,6 0,52	KM-63	71	12,3
		100	14	85			MINI-02	7.1	12,3
0.75	0,55	5	280	19,8	1,4	0,49 0,86			
0,75	0,55				2,3		WN 40		0.4
		7,5	186	20,3 26,8	1,4	0,85 0,83		71-E	9,4 9,5
		10	140						

Tabla de selección REDUCTORES VIS-SIN-FIN

Selection table TRAILING SCREW REDUCERS

n₁=1400rpm

			n B	M (NT-)			4 /4	Tipo	Kg
CV	K.W.	i=	n ₂ Rpm	M ₂ (Nm)	fs	n	Modelo	Motor	Peso
0,75	0,55	5	280	24	3,3	0,86			
		7,5	186	26,5	3	0,86	_		
		10	140	34	2,3	0,84			
		15	94	47,3	1,6	0,78	KM-50	80	12,5
		20	70	62,1	1,2	0,76			
		25	56	73,2	1	0,74			
		30	47	83	1	0,71			
		40	35	106,2	1,4	0,66			
		50	28	123,4	1,1	0,62	KM-63	80	15,1
		60	23,3	141	1	0,6			
		80	18	181	1,1	0,52			
		100	14	206	0,9	0,48	KM-75	80	17,9
1	0,75	5	280	24	3,3	0,86			
		7,5	186	34,8	2,2	0,86			
		10	140	45,2	1,7	0,84	KM-50	80	12,8
		15	94	64,3	1,3	0,78			
		20	70	82	1	0,76			
		25	56	101	1,3	0,73			
		30	47	111,5	1,4	0,71	KM-63	80	15,4
		40	35	145	1	0,66			
		50	28	176	1,2	0,63			
		60	23,3	202	1	0,6	KM-75	80	18,2
		80	18	275,1	1,1	0,53			
		100	14	324	0,9	0,49	KM-90	80	22,2
1,5	1,1	7,5	186	41,8	1,5	0,86			,
.,-	.,.	10	140	49,5	1,3	0,84	KM-50	80-E	16,2
		7,5	186	50,3	2,6	0,86			,-
		10	140	66	2	0,84			
		15	94	94	1,5	0,81			
		20	70	123,1	1,2	0,77	KM-63	90-S	17,6
		25	56	151	1	0,77	7.111-30	30-0	.,,5
		30	47	168,2	0,9	0,73	 		
		40	35	217,5	1	0,71	KM-75	90-S	20,4
		50	28	273	1,3	0,60	1/(NI-1/2	30~3	20,4
		60	23,3	312	1,3	0,62	KM-90	90-S	24,4
		80	18	411,5	2,1	0,66	WINI-20	30-3	24,4
		100	14	462,5		0,66	KM-110	90-S	46,4
2	1 5				1,5		raivi-110	<i>3</i> 0-3	40,4
2	1,5	7,5	186	69,5	1,9	0,86	KW CO	00.1	20.0
		10	140	91	1,5	0,84	KM-63	90-L	20,6
		15	94	128,2	1,2	0,81	_		
		20	70	167,5	0,9	0,77	1/14 ==	00.1	00.4
		25	56	201,2	1	0,74	KM-75	90-L	23,4
		30	47	232	1	0,71			
		40	35	307,5	1,3	0,66	100.00		
		50	28	370	1	0,62	KM-90	90-L	27,4
		60	23,3	426,2	0,9	0,6			
		80	18	493	0,9	0,66	KM-110	90-L	49,4
		100	14	520	0,8	0,61			
2,5	1,85	7,5	186	73,2	1,5	0,86	la francisco	parties and	
		10	140	95,8	1,3	0,84	KM-63	90-E	22,1
		15	94	134,9	1	0,81			
3	2,2	7,5	186	103,2	1,8	0,85			
		10	140	135	1,6	0,84	KM-75	100-L	32
		15	94	193	1	0,78			
		20	70	253	1,4	0,77			
		25	56	308,5	1,1	0,73	KM-90	100-L	36
		30	47	346	1,1	0,71			
		40	35	465	1,3	0,73	73 71 KM-110 100-l		
		50	28	551	1,2	0,71		100-L	58
		60	23,3	648,5	1	0,7			
		80	18	806	1	0,66	KM-130	100-L	129
				555		5,00	,66 KM-130 ,65 KM-150		

Serie

Series

Tabla de selección REDUCTORES VIS-SIN-FIN

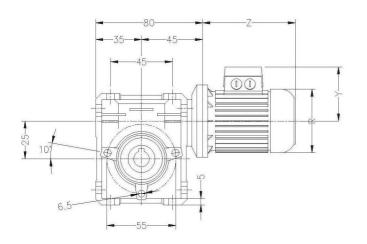
Selection table TRAILING SCREW REDUCERS

n₁=1400rpm

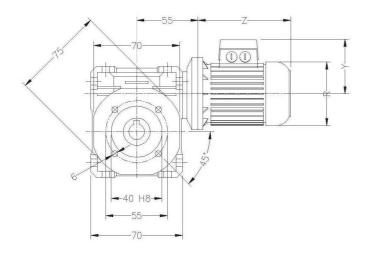
CTT	77 7.7	<u>.</u> _	n, Rpm	M ₂ (Nm)	e -		36-3-3-	Tipo	Kg
cv	K.W.	i=		-	fs	n	Modelo	Motor	Peso
4	3	7,5	186	116,8	1,9	0,86			
		10	140	149,8	1,4	0,84	KM-75	100-L	32,5
		15	94	220,3	11	0,78			
		7,5	186	139,5	2,2	0,8			
		10	140	188	1,8	0,76	KM-90	100-L	36,5
		15	94	265,5	1,4	0,73			
		20	70	349,8	1	0,71			
		25	56	432	1,4	0,8			
		30	47	485	1,3	0,76	KM-110	100-L	58,5
		40	35	464	1,1	0,73	_		
		50	28	769,2	0,8	0,71	1/22 400	400 1	
		60	23,3	886,5	11	0,7	KM-130	100-L	71,5
		80	18	1119,2	0,8	0,68	KM-150	100-L	111,5
5,5	4	7,5	186	183,1	1,2	0,85			
		10	140	242	1	0,84	KM-75	112	43,4
		7,5	186	186	1,6	0,86		nes escue	
		10	140	244,2	1,1	0,84	KM-90	112	65,4
		15	94	352	1,1	0,81	_		
		20	70	459,5	0,8	0,77			
		25	56	576	1	0,88	KM-110	112	65,4
		30	47	646,5	1	0,76			
		40	35	859,2	1,2	0,74	KM-130	112	78,4
		50	28	1025,2	1	0,71			
		60	23,3	1258	1	0,73	KM-150	112	113
		80	18	1270	0,8	0,68			
7,5	5,5	7,5	186	255	2	0,88			
		10	140	334,1	1,6	0,87	KM-110	132-S	84,2
		15	94	486,3	1,3	0,84			
		20	70	638	1	0,63			
		7,5	186	256	3	0,86			
		10	140	335,8	2,4	0,85			
		15	94	491,2	2	0,84			
		20	70	647	1,4	0,83	KM-130	132-S	97,2
		25	56	789	1,2	0,8	1000000000 00000 0000	58.547.54 55.	
		30	47	908,1	1,1	0,8			
		40	35	1173,2	1	0,74			
		40	35	1220,3	1,1	0,78			
		50	28	1457	1	0,76	KM-150	132-S	128
		60	23,3	1380	0,8	0,73		.02 0	
10	7,5	7,5	186	345,5	1,4	0,88			
1000		10	140	457,2	1,1	0,87	KM-110	132-M	89,5
		15	94	661,5	0,9	0,84			,-
		7,5	186	351,5	2,1	0,86	+		
		10	140	456	1,9	0,85	-		
		15	94	668,2	1,4	0,84	-		
		20	70	881,2	1	0,83	KM-130	132-M	102,5
		25	56	1075,2	1	0,83	1.00	102-11	102,0
		30	47	1229	0,9	0,8	-		
		40	35	1596	1	0,8	KM-150	132-M	135
12,5	9	7,5	186	428,5	1,8	0,76	L/M-190	132-111	130
12,0	9	10	140	560,2	1,5	0,85	KM-130	132-M	102,5
		15	94	820,8		0,83	I CIVI-130	132-111	102,5
					1,2		_		
		20	70	1081,2	0,9	0,83	V88 450	420 55	400
45	44	25	56	1225	1 6	0,84	KM-150	132-M	139
15	11	7,5	186	525,6	1,6	0,91	V84 450	400 85	470
		10	140	690,6	1,3	0,9	KM-150	160-M	170
		15	94	1005,7	1,2	0,88	_		
00		20	70	1580	1	0,86			
20	15	7,5	186	1190	1,3	0,91	1005 100	400 -	
		10	140	1100	1,1	0,9	KM-150	160-L	191
		15	94	1050	11	0,88			
25	18,5	7,5	186	1396	1	0,91	KM-150	180-M	217
		10	140	1210	0,9	0,9			

GEARED MOTORS

Dimensiones

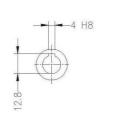

Serie

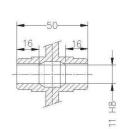
KM


Series

Dimensions

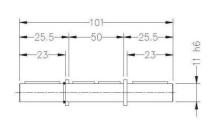
KM-25



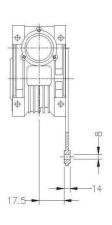

KM-25 (con brida"B")

Posiciones 5

EJE HUECO- HOLLOW OUT PUT SHAFT



EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT


EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT

BRAZO DE REACCIÓN-TORQUE ARM

0.7kg 0.02L.

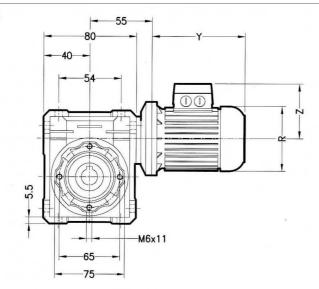
0.7kg 0.02L.

⁻Peso sin motor -Cantidad de aceite

⁻Weight without motor -Quantity of oil

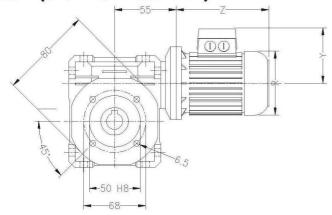
GEARED MOTORS

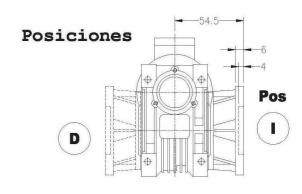
Dimensiones

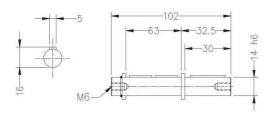

Serie

KM

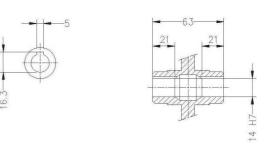
Series

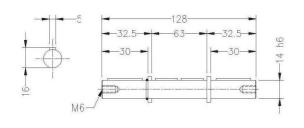

Dimensions

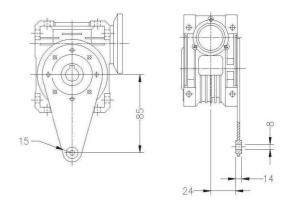

KM-30


-29 -29-2.5--2.5 56

KM-30 (con brida"B")




EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT


EJE HUECO-HOLLOW OUT PUT SHAFT

EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

BRAZO DE REACCIÓN-TORQUE ARM

-Peso sin motor -Cantidad de aceite

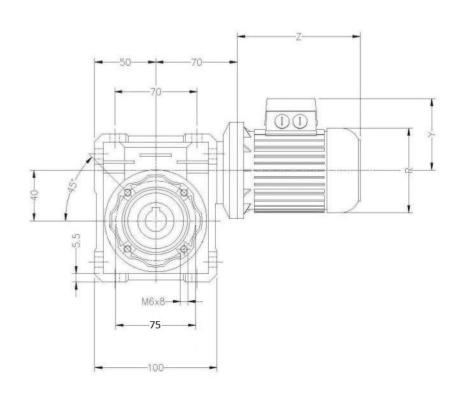
0.7kg 0.04L.

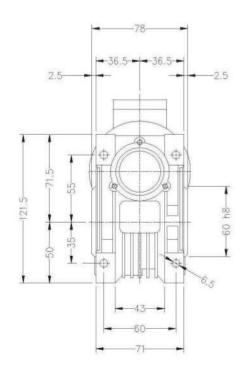
-Weight without motor -Quantity of oil

0.7kg 0.04L.

GEARED MOTORS

Dimensiones

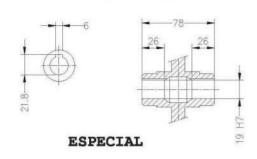

Serie

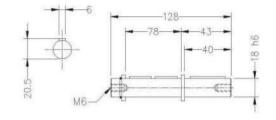

KM

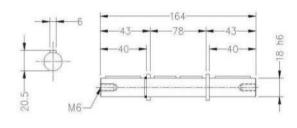
Series

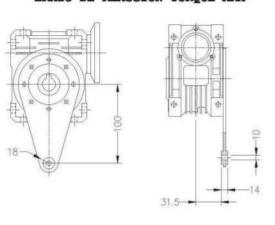
Dimensions

KM-40




EJE HUECO-HOLLOW OUT PUT SHAFT


SOBRE DEMANDA-ON REQUEST


EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT

EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

BRAZO DE REACCIÓN-TORQUE ARM

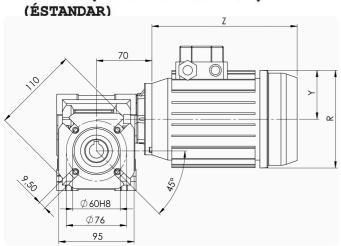
-Peso sin motor -Cantidad de aceite 2.3kg 0.08L.

-Weight without motor -Quantity of oil

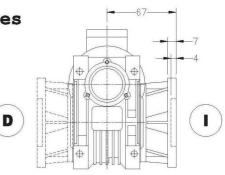
2.3kg 0.08L.

GEARED MOTORS

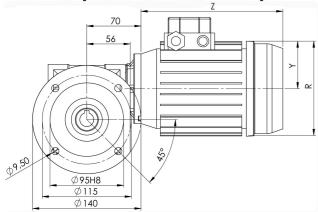
Dimensiones


Serie

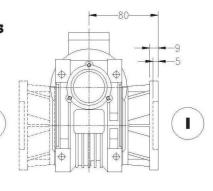
KM

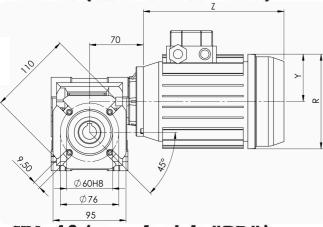

Series

Dimensions

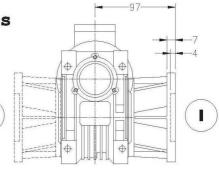

KM-40 (con brida"B")

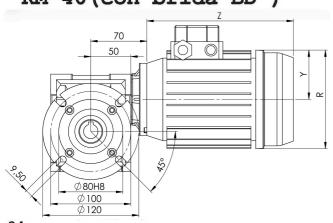
Posiciones

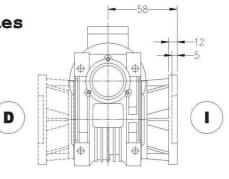

KM-40 (con brida"BC")


Posiciones

D


D


KM-40 (con brida"BB")

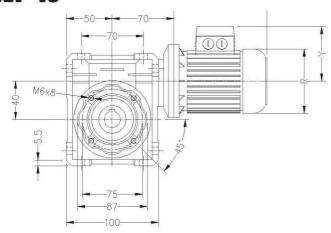

Posiciones

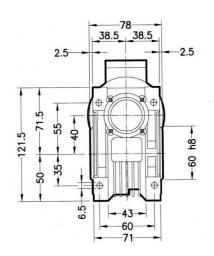
KM-40 (con brida "BD")

Posiciones

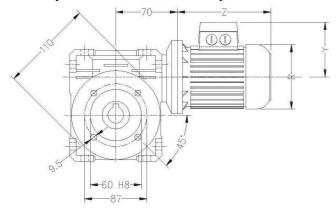
GEARED MOTORS

Dimensiones

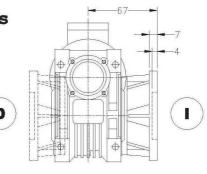

Serie

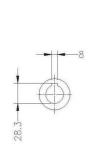

KM

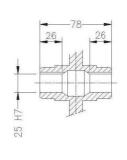
Series

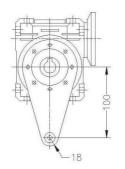

Dimensions

KM-45

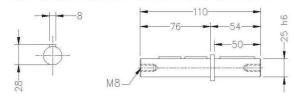



KM-45 (con brida"B")





BRAZO DE REACCIÓN-TORQUE ARM



EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT

EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

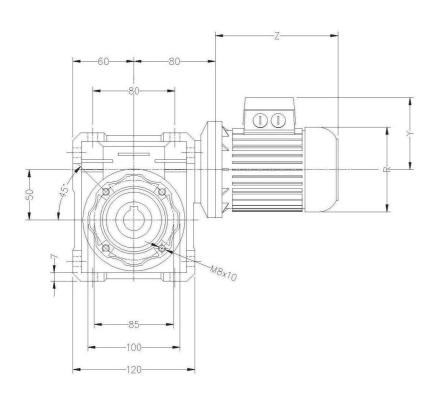
-Peso sin motor -Cantidad de aceite 2.9kg 0.08L.

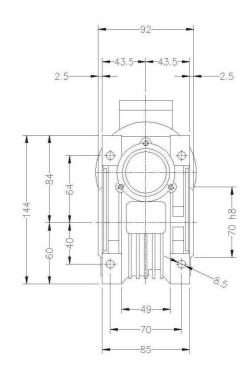
-Weight without motor -Quantity of oil

2.9kg 0.08L.

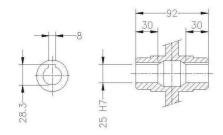
GEARED MOTORS

Dimensiones

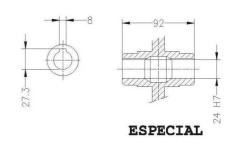

Serie


KM

Series


Dimensions

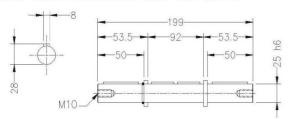
KM-50

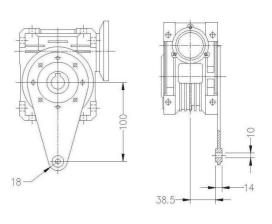


EJE HUECO-HOLLOW OUT PUT SHAFT

ESTÁNDAR

SOBRE DEMANDA-ON REQUEST




BRAZO DE REACCIÓN-TORQUE ARM

8 153 53.5 92 53.5 92 S

EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

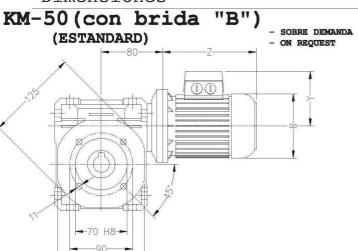
EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT

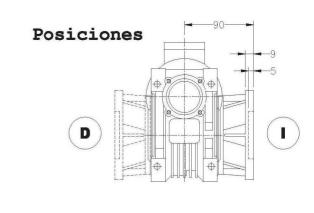
-Peso sin motor -Cantidad de aceite 3.5kg 0.15L.

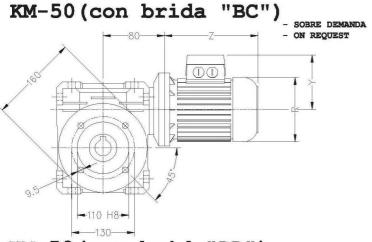
-Weight without motor -Quantity of oil

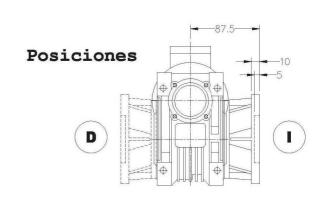
3.5kg 0.15L.

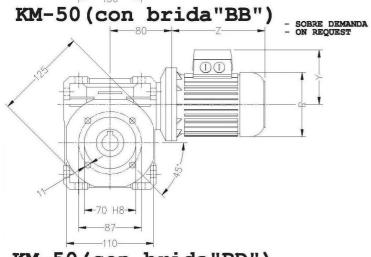
GEARED MOTORS

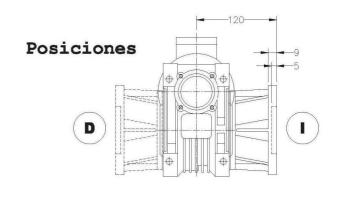

Dimensiones

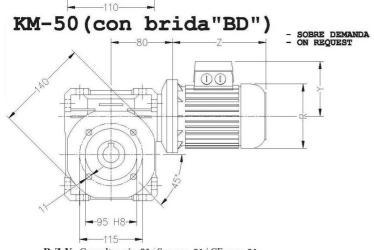

Serie

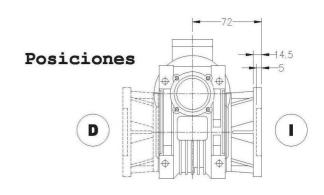

KM


Series


Dimensions

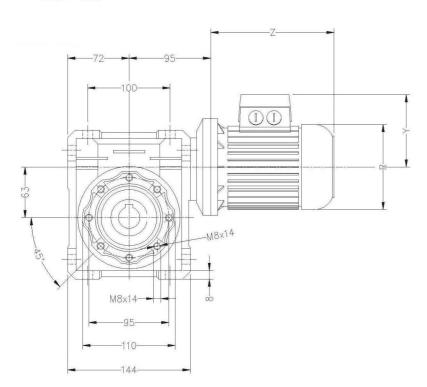


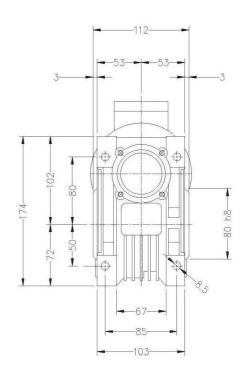




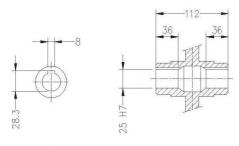
GEARED MOTORS

Dimensiones

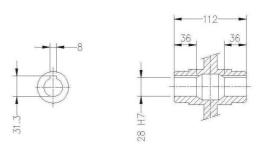

Serie


KM

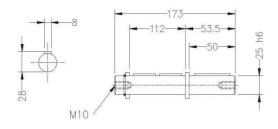
Series

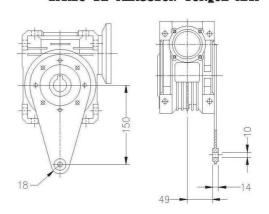

Dimensions

KM-63

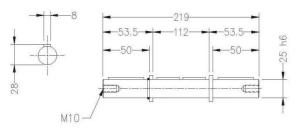


EJE HUECO-HOLLOW OUT PUT SHAFT


SOBRE DEMANDA-ON REQUEST


ESPECIAL

ESTÁNDAR


EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT

BRAZO DE REACCIÓN-TORQUE ARM

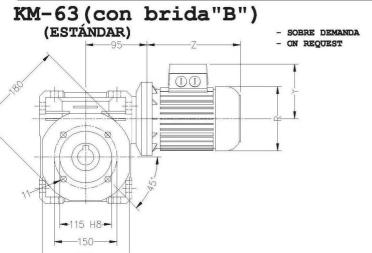
EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

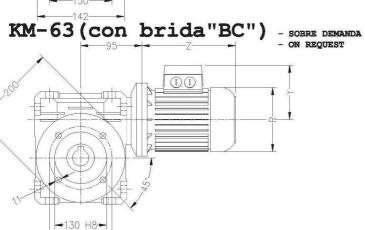
-Peso sin motor -Cantidad de aceite 6.2kg 0.3L.

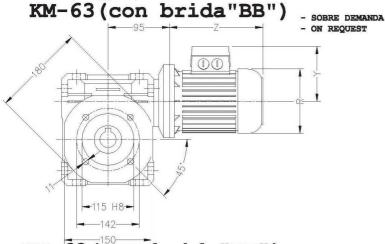
-Weight without motor -Quantity of oil

6.2kg 0.3L.

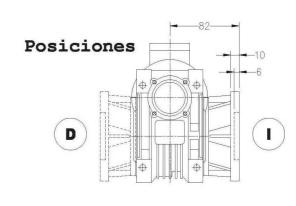
GEARED MOTORS

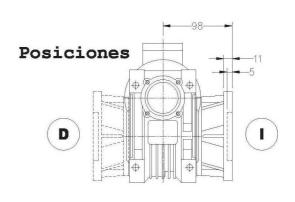

Dimensiones

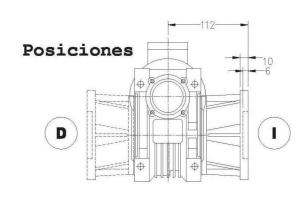

Serie

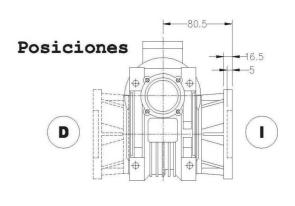

KM

Series

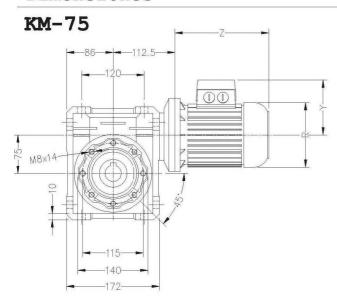

Dimensions



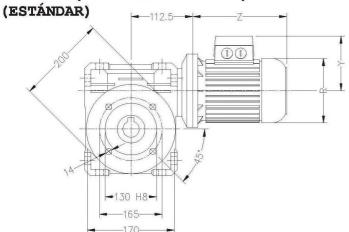




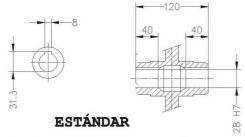
GEARED MOTORS

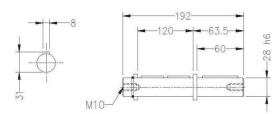

Dimensiones

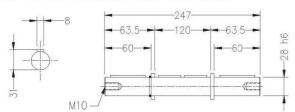
Serie

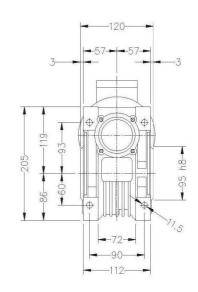

KM

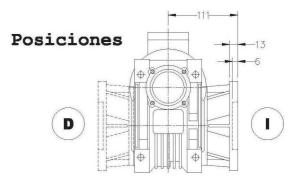
Series


Dimensions

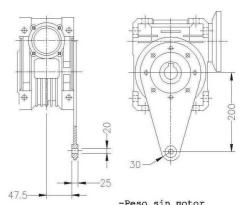

KM-75 (con brida"B")


EJE HUECO-HOLLOW OUT PUT SHAFT




EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT

EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT



SOBRE DEMANDA-ON REQUEST

BRAZO DE REACCIÓN-TORQUE ARM

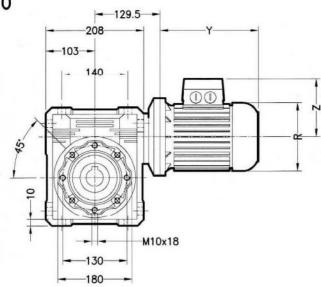
-Peso sin motor -Cantidad de aceite

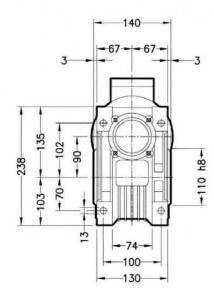
-Weight without motor -Quantity of oil 9kg 0.55L.

9kg 0.55L.

GEARED MOTORS

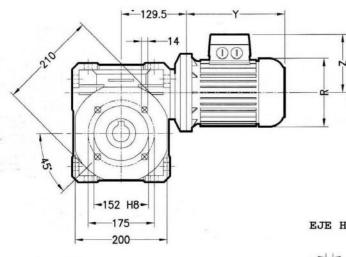
Dimensiones

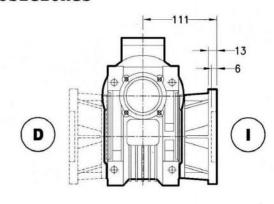

Serie


KM

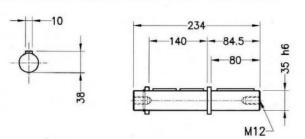
Series

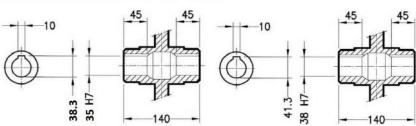
Dimensions





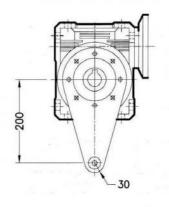
KM-90 (con brida "b")

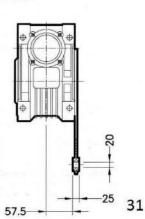

Posiciones



EJE HUECO-HOLLOW OUT PUT SHAFT

EJE HUECO ESPECIAL


EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT



EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

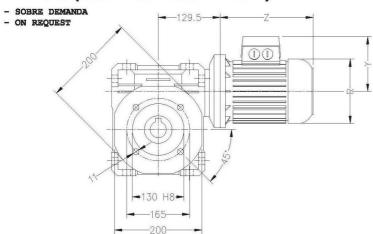
84.5 94 -80 M12-

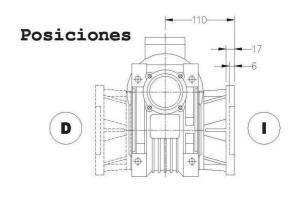
BRAZO DE REACCIÓN-TORQUE ARM

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

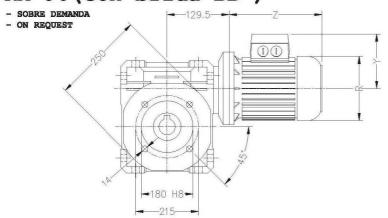
GEARED MOTORS

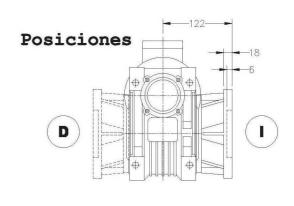
Dimensiones

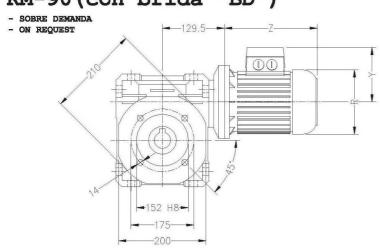

Serie

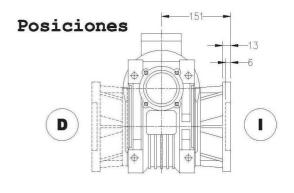

KM

Series


Dimensions


KM-90 (con brida "BC")




KM-90 (con brida"BB")

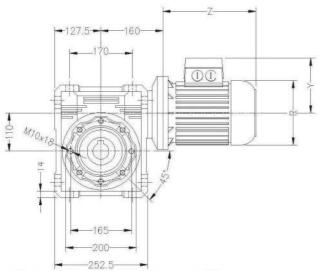
KM-90 (con brida "BD")

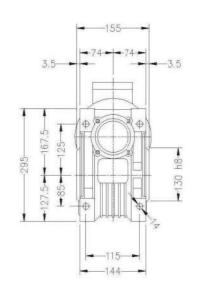
-Peso sin motor 13kg -Cantidad de aceite 1L.

-Weight without motor 13kg
-Quantity of oil 1L.

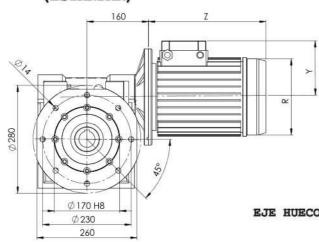
GEARED MOTORS

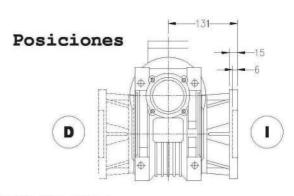
Dimensiones

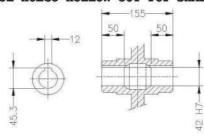

Serie


KM

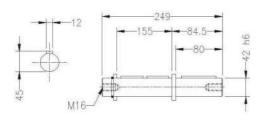
Series

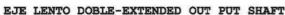

Dimensions

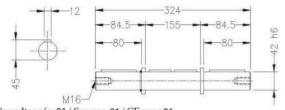

KM-110

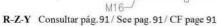


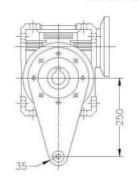
KM-110 (con brida"B") (ESTÁNDAR)

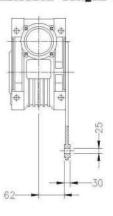



EJE HUECO-HOLLOW OUT PUT SHAFT




BRAZO DE REACCIÓN-TORQUE ARM


EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT



-Peso sin motor -Cantidad de aceite

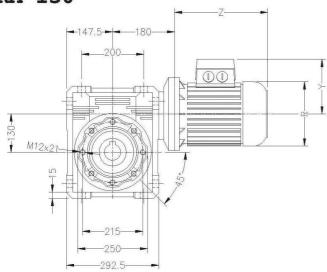
35kg 3L.

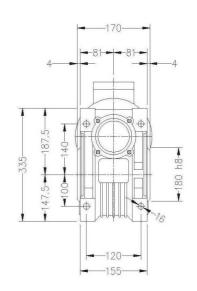
-Weight without motor -Quantity of oil

35kg 3L.

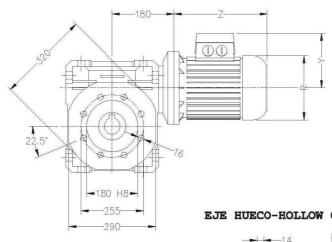
GEARED MOTORS

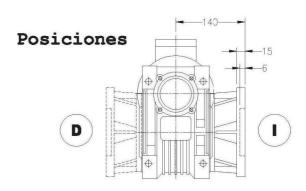
Dimensiones

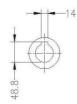

Serie

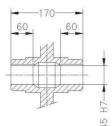

KM

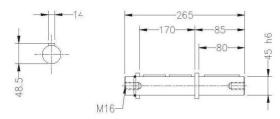
Series

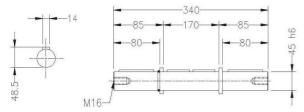

Dimensions


KM-130



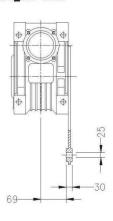

KM-130 (con brida"B") (ESTÁNDAR)


EJE HUECO-HOLLOW OUT PUT SHAFT



BRAZO DE REACCIÓN-TORQUE ARM

EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT



EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

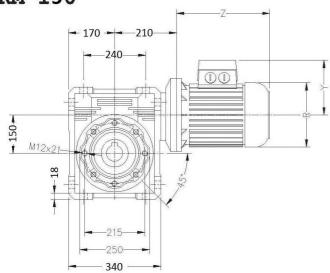
48kg

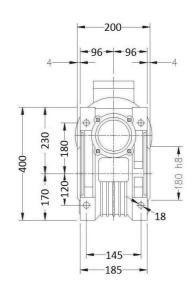
-Peso sin motor -Cantidad de aceite

-Weight without motor -Quantity of oil 48kg 4.5L.

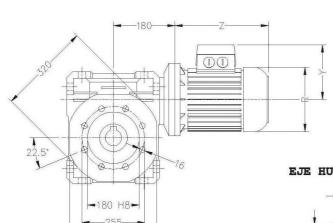
GEARED MOTORS

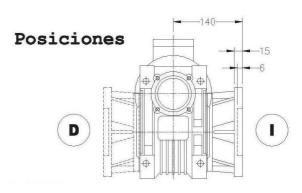
Dimensiones

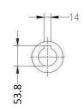

Serie

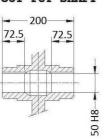

KM

Series

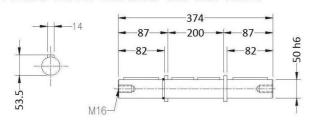

Dimensions

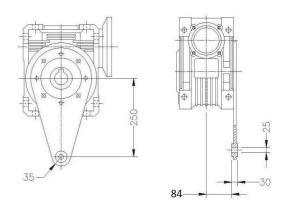

KM-150




KM-150 (con brida"B") (ESTÁNDAR)


EJE HUECO-HOLLOW OUT PUT SHAFT




BRAZO DE REACCION-TORQUE ARM

EJE LENTO SIMPLE-SINGLE OUT PUT SHAFT

EJE LENTO DOBLE-EXTENDED OUT PUT SHAFT

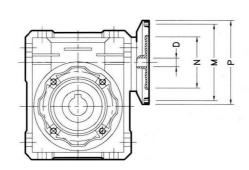
84kg 7L.

-Peso sin motor -Cantidad de aceite

-Weight without motor 84kg

DISPOSICIÓN ACOPLE MOTOR

MOTOR FLANGE COUPLING DISPOSITION


Serie

KM

Series

Dimensiones

Dimensions

	Tipo	PAM									D=H ⁷					
Modelo	motor	IEC	N	M	P	7,5	10	15	20	25	30	40	50	60	80	100
KM-25	56	B-14	50	65	80	9	9	9	9		9	9	9	9		
		B-14	50	65	80											
KM-30	56	B-5	80	100	120	9	9	9	9	9	9	9	9	9	9	
		B-14	90	75	90											
KM-40 KM-45 KM-50 KM-63	63	B-5	95	115	140	11	11	11	11	11	11	11				
	56	B-5	80	100	120		200						9	9	9	9
		B-14	60	75	90											
KM-40	63	B-5	95	115	140	11	11	11	11	11	11	11	11	11	11	11
5-55891 5181		B-14	70	85	105				,.							
	71	B-5	110	130	160	14	14	14	14	14	14	14				
	- ''	B-14	70	85	105	1.7	1.1		1.4	1.1		1.1				
KM-45	71	B-5	110	130	160	14	14	14	14	14	14	14	11	11	11	11
111111110	63	B-5	95	115	140	1.7	17	17	1.4	17	17	11	11	11		11
	00	B-14	70	85	105							- 11	11.	III	111	1.1
KM-50	71	B-14	110	130	160	14	14	14	14	14	14	14	14	14	4.4	
IVIVI-00	- 11	B-14	80			14	14	14	14	14	14	14	14	14	14	
	80		130	100	120 200	19	19	19	19	19	19					
	80	B-5		165		19	19	19	19	19	19					
	_,	B-14	70	85	105								**		2.2	
VM CO	71	B-5	110	130	160							14	14	14	14	14
K IVI-63		B-14	80	100	120		200					and the second	and the			
	80	B-5	130	165	200	19	19	19	19	19	19	19	19	19		
		B-14	95	115	140										9 11 11 11 11 14 14 14 19 19 24 24 28 28	
	90	B-5	130	165	200	24	24	24	24	24	24	5			9 11 11 11 14 14 14 19 19 24 24 28	
	71	B-5	110	130	160								14	14	14	14
		B-14	80	100	120											
	80	B-5	130	165	200				19	19	19	19	19	19	19	19
KM-75		B-14	95	115	140											
	90	B-5	130	165	200	24	24	24	24	24	24	24				
		B-14	110	130	160											
	100/112	B-5	180	215	250	28	28	28								
		B-14	80	100	120											
	80	B-5	130	165	200							19	19	19	19	19
KM-90		B-14	95	115	140											
	90	B-5	130	165	200	24	24	24	24	24	24	24	24	24		
		B-14	110	130	160											
	100/112	B-5	180	215	250	28	28	28	28	28	28					
	80	B-5	130	165	200										19	19
KM-110	90	B-5	130	165	200					24	24	24	24	24	-	24
	100/112	B-5	180	215	250	28	28	28	28	28	28	28	28	28		
	132	B-5	230	265	300	38	38	38	38	20	20	20	20	20		
	90	B-5	130	165	200			•							24	24
KM-130	100/112	B-5	180	215	250	-				28	28	28	28	28		28
11111100	132	B-5	230	265	300	38	38	38	38	38	38	20	20	20	20	20
	100/112	B-5	180	215	250	30	30	30	30	30	J0		28	28	28	28
KM-150	132	B-5	230	265	300				38	38	38	38	38	38	20	20
	160	B-5	250	300	350	42	42	42	42	30	30	30	30	30		

NOTAS

MOTOVARIADOR-REDUCTOR DE VIS-SIN-FIN TRAILING SCREW MOTOR VARIATOR REDUCER

KMV

Series

Tabla de selección

Selection table

n,=1400rpm

CV	KW	i=		(Nm)	ATTACABLE TO SERVICE AND ADDRESS OF THE PARTY OF THE PART	Rpm)	Modelo	Moto
			Min	Max	Min	Max		
0,16	0,12	5	7,2	13,2	34	176		
		7,5	7,9	15,6	22,6	117,3		
		10	9,6	20,1	17	88		
		15	14,3	28	11,3	58,6		
		20	19,8	36	8,5	44		
		25	23,7	42,8	6,8	35,2	KMV	63
		30	26,5	46,7	5,6	29,3	40/02	
		40	33,1	57,9	4,25	22		
		50	20,2	38,8	3,4	17,6		
		60	20,2	38,8	2,8	14,6		
		80	17,3	35,5	2,12	11		
		100	17,3	35,5	1,7	8,8		
0,25	0,18	5	7,9	16,1	34	176		
		7,5	9	18,3	22,6	117,3		
		10	12	23,4	17	88		
		15	17	32,4	11,3	58,6		
		20	22	40,5	8,5	44		
		25	27	47,2	6,8	35,2	KMV	63
		30	30	51,2	5,6	29,3	40/02	
		40	37	62,4	4,25	22	10,02	
		50	22	40,5	3,4	17,6	-	
		60	22	40,5	2,8	14,6		
		80	59	93	2,1	11	KMV	63
	-	100	67	83	1,7	8,8	50/02	00
0,33	0,25	5	8,7	19	34	176	30/02	
0,00	0,23	7,5	10,8	21,4	22,6	117,3	-	
		10	14	26	17	88	-	
		15	19,5	36	11,3	58,6	-	
		20				44	KMV	63-E
	-	25	24,6	43,2	8,5	35,2		03-E
	-		29,2	49,7	6,8		40/02	
		30	33	53,5	5,6	29,3		
		40	39	63,5	4,2	22		
		50	59	113	3,4	17,6	L/BAV/	- CO E
		60	49	102	2,8	14,6	KMV	63-E
		80	60	79	2,1	11	50/02	
		50	63	116	4	20	178 57	
		60	52	106	3,3	16	KMV	71
		80	63	81,3	2,5	12,5	50/03	- 00 E
		100	68	88	1,7	8,8	MVK-50/02	63-E
0,5	0,37	5	9,6	24	39	200		
		7,5	12	35	26	133,3		
		10	17	51	20	100		1300000
		15	22	69	13,3	66,6	KMV	71
		20	30	84	10	50	40/03	
		25	36	90	8	40		
		30	37	92	6,6	33,3	45/03	
		40	77	124	5	25		
		50	89	120	4	20	KMV	71
		60	161	92	3,3	16,6	50/03	
		80	126	172	2,5	12,5	KMV	71
		100	139	173	2	10	63/03	

MOTOVARIADOR-REDUCTOR DE VIS-SIN-FIN

TRAILING SCREW MOTOR VARIATOR REDUCER

Serie

KMV

Series KM

Tabla de selección

Selection table

n,=1400rpm

CV	KW	i=	M ₂ (Nm)	n ₂ (l	Rpm)	Modelo	Motor
			Min	Max	Min	Max		
0,75	0,55	5	12	34	39	200		
		7,5	22	45	26	133,3	KMV	71-E
		10	19,5	53	20	100	45/03	
		15	43	89,5	13,3	66,6		
		5	16	38	39	200		
		7,5	19,5	57	26,6	133,3		
		10	29	81	20	100		
		15	43,8	116	13,3	66,6	KMV	71-E
		20	47	136	10	50	50/03	
		25	62	143	8	40		
		30	44	76	6,6	33,3		
		5	18	43	39	200		
		7,5	21,5	62	26,6	133,3		
		10	32	87	20	100		
		15	48,5	121	13,3	66,6	KMV	80
		20	53	148	10	50	50/04	
		25	70	157	8	40		
		30	48,5	83	6,6	33,3		
		40	113	172	9	25		
		50	104,5	160,5	4	20	KMV	80
		60	83	140	3,3	16,6	63/04	
		80	177	252	2,5	12,5		80
		100	195	270	2		KMV 75/04	
1	0,75	7,5	28	70	26,6	10 75/04 133,3		
	,	10	37	93	20		,3 0 6 50/04	80
		15	56	128	13,3	66,6		
		20	67	148	10	50		
		25	113	199	8	40		
		30	127	221	6,6	33,3	KMV	80
		40	157	232	5	25	63/04	
		50	185,5	310,5	4	20	KMV	80
		60	219	301	3,3	16,6	75/04	
		80	265	428	2,5	12,5	KMV	80
		100	303	410	2	10	90/04	
1,5	1,1	7,5	40	90	26,6	133,3		
		10	45,5	112	20	100	1	
	1	15	105	223	13,3	66,6	KMV	90-S
	1	20	125	235	10	50	63/05	
		25	129	237	8	40		
	1	30	129	237	6,6	33,3	1	
	1	7,5	60	112	26,6			
		10	79,5	145	20		-	
		15	110,5	203	13,3		133,3 100 66,6 KMV 50 75/05	90-S
		20	142	259	10	50		
		25	172,5	310			-	
	1	30	196	340			75/05	
		40	245	360,5	40 6,6 33,3	1		
		50	304	517	4	33,3 25	KMV	90-S
	1	60	308	522	3,3	16,6	90/05	000
		80	456	754	2,5	12,5	KMV	90-S
	-	100	522,5	709	2,3	10	110/05	50-0

MOTOVARIADOR-REDUCTOR DE VIS-SIN-FIN

TRAILING SCREW MOTOR VARIATOR REDUCER

Serie

KMV

Series KM\

Tabla de selección

Selection table

n₁=1400rpm

CV	KW	i=	n ₂ (F	Rpm)	M ₂	(Nm)	Modelo	Motor
			Min	Max	Min	Max		
2	1,5	7,5	78	148,5	26,6	133,3		
		10	101,5	192	20	100		
		15	148	270,5	13,3	66,6	KMV	90-L
		20	191	345	10	50	75/05	
		25	229	332	8	40		
		30	261	390	6,6	33,3		
		40	328	359	5	25	KMV	
		50	406	560	4	20	90/05	90-L
		60	460	630	3,3	16,6		
		80	525	1180	2,5	12,5	KMV	90-L
		100	590	1220	2	10	110/05	
3	2,2	7,5	102	225	26,6	133,3	N 1967 65 10 10 10 10 10 10 10 10 10 10 10 10 10	
	,	10	138,5	295	20	100		
		15	204,5	439	13,3	66,6	KMV	100-L
		20	272	585	10	50	90/06	
		25	306	620	8	40		
		30	352,5	755	6,6	33,3		
		40	533	931	5	25	KMV	
		50	570	1210	4	20	110/06	100-L
		60	599,5	1270	3,3	16,6		
		80	920	1498	2,5	12,5	KMV-130/06	100-L
		100	1220	1756	2	10	KMV-150/06	100-L
4	3	7,5	158	310	26,6	133		
		10	248	407	20	100	KMV	100-L
		15	374	590	13,3	66,6	90/06	
		20	385	720	10	50		
		25	551	920	8	40		
		30	575	1190	6,6	33,3	KMV	100-L
		40	670	1370	5	25	110/06	
		50	796	1620	4	20		
		60	870	1890	3,3	16,6	KMV 130/06	100-L
		80	920	1985	2,5	12,5	KMV 150/06	100-L
5,5	4	7,5	215	402	26,6	133,3		
,		10	280	523	20	100		
		15	545	745	13,3	66,6		
		20	533	975	10	50	KMV	112
		25	648	1021	8	40	110/06	
		30	690	1315	6,6	33,3		
		40	778	1409	5	25		
		50	1081	2185	4	20	KMV 130/06	112
		60	1090	2200	3,3	16,6	KMV	112
		80	1120	2325	2,5	12,5	150/06	1.12

MOTOVARIADOR-REDUCTOR DE VIS-SIN-FIN

TRAILING SCREW MOTOR VARIATOR REDUCER

Dimensiones

Serie KMV
Series

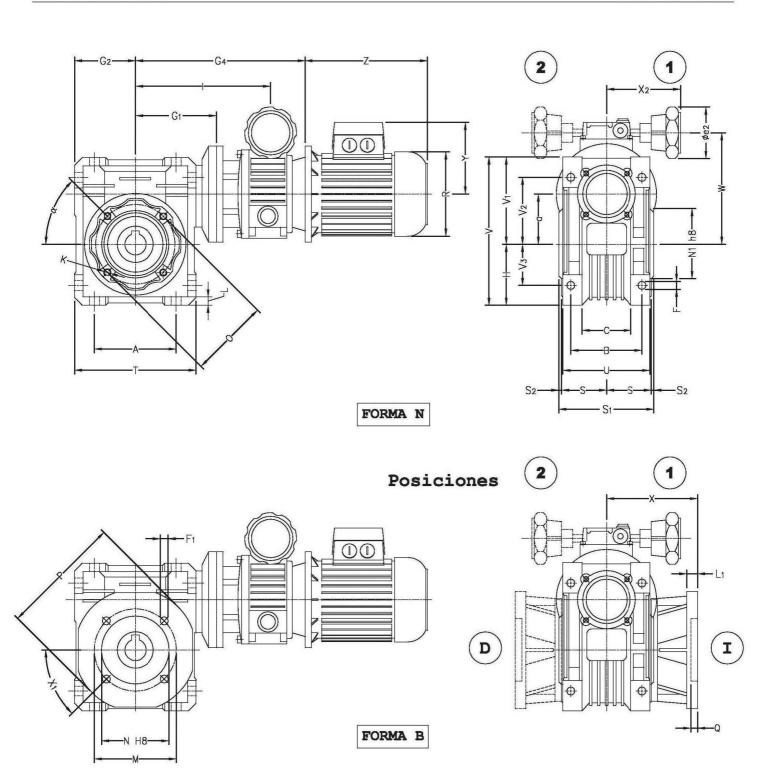
MODE	MODELO /	A	B	В	p	ပ	D ⁴⁷	e¹	e ₂	ш	ι.	ອົ	₂	ອ້	I		X	L		
KMV-40	-02	70	40	09	9	43	18	20,8	85	6,5	9(4)	70	20	182,5	20	134,5	M.6		6,5	6,5
	-03	70	40	90	9	43	19	21,8	85	6,5	9(4)	70	20	180	20	144	(4)		6,5	6,5
KMV-45	-02	70	40	09		43			85	6,5	9(4)	70	20	182,5	20	134,5	M.6		6,5	6,5
	-03	70	40	90	00	43	25	28,3	85	6,5	9(4)	70	20	180	20	144	4)		6,5	
	-02	80	20	70	80	49	25	28,3	85	8,5	11(4)	80	09	192,5	09	144,5	M.8		7	
KMV-50	-03	80	20	70		49			85	8,5	11(4)	80	09	190	09	154	4)		7	6 2
	4	80	20	70	∞	49	24	27,3	110	8,5	11(4)	80	09	219	09	165,5			7	7 9
	-03	100	83	85	80	19	25	28,3	85	8,5	11(4)	92	72	205	72	169	M.8		80	
KMV-63	40	100	83	85		29			110	8,5	11(4)	95	72	234	72	180,5	4)		œ	
	-05	100	83	85	ω	29	28	31,3	110	8,5	11(4)	92	72	283	72	210			œ	8 10
KMV-75	-04	120	75	90	80	72	28	31,3	110	11	14(4)	112,5	98	251,5	98	198	M.8		10	
	-05	120	75	06	10	72	32	38,3	110	11	14(4)	112,5	98	300,5	98	227,5	4)		10	
	49	140	06	100	10	74	35	38,3	110	13	14(4)	103	103	268,5	103	215	M.10		1	
KMV-90	-05	140	06	100		74		5	110	13	14(4)	103	103	317,5	103	244,5	(8)		11	
	90-	140	8	100	10	74	38	41,3	110	13	14(4)	103	103	337,5	103	260,5			1	
	-05	170	110	115	12	95	42	45,3	110	14	14(8)	160	127,5	348	127,5	275	M.10		14	
KMV-110	90-	170	110	115	12	98	42	45,3	110	14	14(8)	160	127,5	368	127,5	291	(8)		14	
KMV-130	90-	200	130	120	14	103	45	48,8	110	16	16(8)	180	147,5	388	147,5	311	M.12 (8)		15	
KNN/_150	30	240	150	115	77	115	20	22 0	710	70	16/0/	2,0	470	440	470	241	(0) CF W		40	

S ₂ T U V, V, V, V, V, W V, V, V, W V, V, V, W V, V, V, W V, V, V, V, W V, V, V, V, V, V, V I V, V
S ₂ T U V ₁ V ₂ V ₃ W 1 2.5 100 71 121,5 71,5 56 35 161 2.5 100 71 121,5 71,5 56 35 163 2.5 100 71 121,5 71,5 56 35 163 2.5 100 71 121,5 71,5 56 35 163 2.5 120 85 144 84 64 40 161 2.5 120 85 144 84 64 40 173 2.5 120 85 144 84 64 40 190 2.5 120 85 144 84 64 40 190 2.5 120 85 174 102 80 50 203 2.5 144 103 174 102 80 50 216
V V, V
V, V, V, W 71,5 55 35 151 71,5 56 35 163 71,5 56 36 163 71,5 56 36 163 84 64 40 161 84 64 40 173 84 64 40 173 102 80 50 203 102 80 50 216 119 93 60 215 119 93 60 215 135 102 70 230 135 102 70 234 135 102 70 278
V, V, V, W W (5) 71,5 55 35 151 (6) 71,6 55 35 163 (7) 71,6 56 35 163 (8) 71,5 56 35 163 (9) 71,5 56 35 163 (10) 84 64 40 161 (10) 80 50 136 130 (10) 80 50 203 203 (11) 93 60 215 203 (11) 93 60 215 219 (12) 80 50 203 219 (13) 93 60 215 219 (13) 102 70 234 (12) 102 70 234 (12) 102 70 278 (13) 102 70 278 (12) <
V ₂ V ₃ W 55 35 151 56 35 163 66 35 163 64 40 161 64 40 173 64 40 173 80 50 203 80 50 216 93 60 215 93 60 215 102 70 230 102 70 234 102 70 278 102 70 278
V _s W 35 151 36 163 36 163 36 163 40 161 40 173 40 190 50 203 50 210 60 216 60 216 60 216 70 234 70 278 86 278 86 278 86 278 86 278 86 278 87 278 86 278 87 278 86 278 87 264 86 278 87 264 86 264 87 264 86 264 87 264 86 264 86 264 87 264 86 264 86 264 86 264 87 264 86 264 86 264 86 264 86 264 86 <
W X 151 67 163 67 161 67 163 67 161 67 163 67 164 90 173 90 196 82 203 82 210 82 210 82 215 111 230 111 234 111 278 111 278 131 274 134
× 67 67 67 67 67 67 67 67 67 67 67 67 67

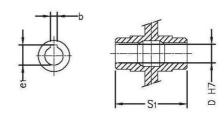
Sobre demanda/On request

R-Z-Y Consultar pág.91/ See pag.91/ CF page 91

MOTOVARIADOR-REDUCTOR DE VIS-SIN-FIN


Serie

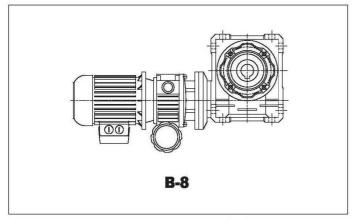
KMV

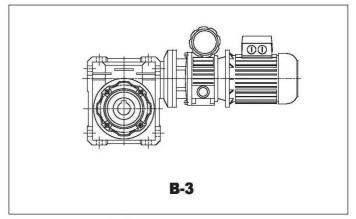

TRAILING SCREW MOTOR VARIATOR REDUCER

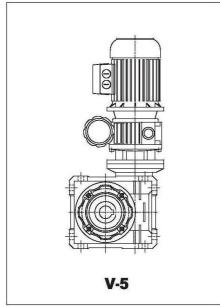
Series

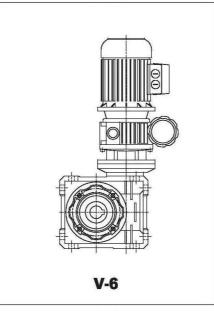
Dimensions

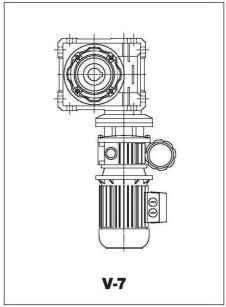
EJE HUECO/ HOLLOW OUT PUT SHAFT

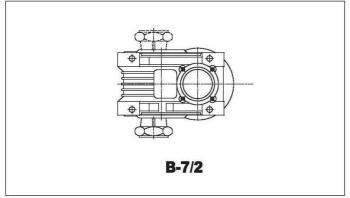


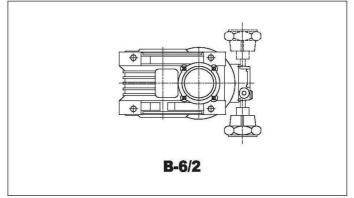

TRAILING SCREW MOTOR VARIATOR REDUCER

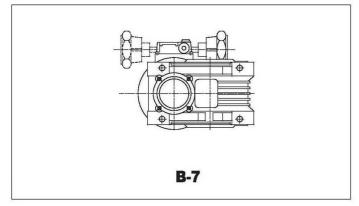

Serie KMV
Series

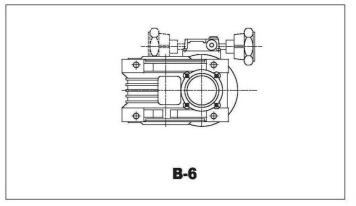

Posiciones de montaje

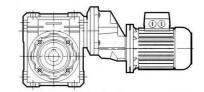

Mounting positions











MOTORREDUCTOR DE VIS-SIN-FIN CON PRE-REDUCTOR

Serie

KP-MKP

WORM GEARBOX WITH PRE-STAGE HELICAL UNIT

Series

Selection table

Tabla de selección

n₁=1400rpm

CV	KW	I (T)	I ₁ X I ₂	M ₂ (Nm)	n ₂ (Rpm)	MODELO	МОТО
0,12	0,09	175	(3,5 x50)	58	8		
		210	(3,5 x 60)	63	6,6		
		240	(8 x 30)	86	5,8		
		320	(8 x 40)	76	4,3	KP-MKP	56
		378	(6,3 x 60)	68	3,7	63/40	
		480	(8 x 60)	68	2,9		
		630	(6,3 x 100)	68	2,2		
		800	(8 x 100)	53	1,75		
		160	(8 x 20)	84	8,7		
		224	(8 x 28)	92	6,2		
		280	(8 x 35)	90	5		
		320	(8 x 40)	83	4,3	KP-MKP	56
		400	(8 x 50)	76	3,5	63/45	
		480	(8 x 60)	67	2,9		
		640	(8 x 80)	60	2,2		
0,16	0,12	189	(6,3 x 30)	78	7,4	KP-MKP	63
		240	(8 x 30)	86	5,8	63/40	
		280	(8 x 35)	96	5	KP-MKP	63
		320	(8 x 40)	98	4,3	63/45	
		320	(8 x 40)	132	4,3		
		460	(8 x 50)	126	3,5		
		480	(8 x 60)	124	2,9	KP-MKP	63
		640	(8 x 80)	93	2,1	63/50	
		800	(8 x 100)	67	1,7	63/50	
0,25	0,18	175	(3,5 x 50)	139	8		
		189	(6 x 30)	139	7,4		
		240	(8 x 30)	153	5,8		
		320	(8 x 40)	138	4,3	KP-MKP	63
		400	(8 x 50)	125	3,5	63/50	
		480	(8 x 60)	120	2,9		
		640	(8 x 80)	96	2,1		
		800	(8 x 100)	63	1,7		
0,33	0,25	189	(6,3 x 30)	141	7,4	KP-MKP 63/50	71
		240	(8 x 30)	162	5,8		
		315	(6,3 x 50)	145	4,4		
		400	(8 x 50)	132	3,5	KP-MKP	71
		480	(8 x 60)	128	2,9	71/50	
		640	(8 x 80)	106	2,1		
		800	(8 x 100)	72	1,7		
0,5	0,37	189	(6,3 x 30)	146	7,4		
		240	(8 x 30)	156	5,8	KP-MKP	71
		320	(8 x 40)	118	4,3	71/50	
		400	(8 x 50)	226	3,5		
		480	(8 x 60)	202	2,9	KP-MKP	71
		640	(8 x 80)	168	2,1	71/63	
		800	(8 x 100)	101	1,7		

Valor M2 máximo soportable por el reductor / The peak value than reducer can bear

MOTORREDUCTOR DE VIS-SIN-FIN CON PRE-REDUCTOR

Serie

KP-MKP

WORM GEARBOX WITH PRE-STAGE HELICAL UNIT

Series

Tabla de selección

Selection table

n₁=1400rpm

CV	KW	i (T)	I ₁ x i ₂	M ₂ (Nm)	n ₂ (Rpm)	Modelo	Motor
0,75	0,5	180	(6,3 x 30)	239	7,4		
0,70	0,0	252	(6,3 x 40)	273	5,5	KP-MKP	
		320	(8 x 40)	235	4,3	80/63	
		400	(8 x 50)	248	3,5		80
		480	(8 x 60)	298	2,9		
		640	(8 x 80)	315	2,1	KP-MKP	
		800	(8 x 100)	318	1,75	80/75	
1	0,75	189	(6,3 x 30)	335	7,4		
		252	(6,3 x 40)	342	5,5		
		320	(8 x 40)	358	4,3	KP-MKP	80
		378	(6,3 x 60)	362	3,7	80/75	
		480	(8 x 60)	365	2,9		
		630	(6,3 x 100)	365	2,2		
1,5	1,1	189	(6,3 x 30)	468	7,4		
		252	(6,3 x 40)	495	5,5		
		320	(8 x 40)	510	4,3	KP-MKP	90-S
		378	(6,3 x 60)	535	3,7	80/90	
		480	(8 x 60)	535	2,9		
		630	(6,3 x 100)	535	2,2		
2	1,5	189	(6,3 x 30)	1198	7,4		
	300	252	(6,3 x 40)	1215	5,5	KP-MKP	90-L
		315	(6,3 x 50)	1230	4,4	80/110	
		400	(8 x 50)	970	3,5		
		480	(8 x 60)	1270	2,9	KP-MKP	90-L
		640	(8 x 80)	1315	2,1	80/130	
2,5	1,8	189	(6,3 x 30)	1398	7,4		
		252	(6,3 x 40)	1420	5,5	KP-MKP	90-L
		315	(6,3 x 50)	1420	4,4	80/130	
		378	(6,3 x 60)	1420	3,7		

Valor M2 máximo soportable por el reductor / The peak value than reducer can bear

Dimensiones

MOTORREDUCTOR DE VIS-SIN-FIN CON PRE-REDUCTOR

Serie

KP-MKP

Series

WORM GEARBOX WITH PRE-STAGE HELICAL UNIT

Dimensions

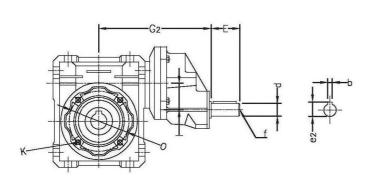
					M	odelo				
	63/40	63/45	63/50	71/50	71/63	80/63	80/75	80/90	80/110	80/130
Α	70	70	80	80	100	100	120	140	170	200
а	40	40	50	50	63	63	75	90	110	130
В	60	60	70	70	85	85	90	100	115	122
b	6	8	8	8	8	8	80/75	10	12	14
b1	4	4	4	5	5	5	6	6	6	6
С	43	43	49	49	67	67	72	74	85	90
D ^{H7}	18 19	25	25 24	25 24	25 28	25 28	28 35	35 38	42	45
d ^{j6}	11	11	11	14	14	19	19	19	19	19
E	22	22	22	30	30	40	40	40	40	40
e ₁	20,8 21,8	28,3	28,3 27,3	28,3 27,3	28,3 31,3	28,3 28,3	31,3 38,3	38,3 41,3	45,3	48,8
e ₂	12,5	12,5	12,5	16	16	22,5	22,5	22,5	22,5	22,5
F	6,5	6,5	8,5	8,5	8,5	8,5	11	13	14	16
F ₁ (estándar)	9 (4)	9 (4)	11 (4)	11 (4)	11 (4)	11 (4)	14 (4)	14 (4)	14 (8)	16 (8)
f	M.4 x 10	M.4 x 10	M.4 x 10	M.6 x 15	M.6 x 15	M.8 x 20	M.8 x 20	M.8 x 20	M.8 x 20	M. 8 x 20
G	50	50	60	60	72	72	86	103	127,5	147,5
G ₁	70	70	80	80	95	95	112,5	129,5	160	180
G ₂	153	153	163	170	185	209	226,5	243,5	274	294
G ₃	83	83	83	90	90	114	114	114	114	114
Н	50	50	60	60	72	72	86	103	127,5	147,5
1	32	32	32	40	40	50	50	50	50	50
K	M.6 x 8(4)	M.6 x 8(4)	M.8 x 10(4)	M.8 x 10(4)	M.8 x 14 (8)	M.8 x 14(8)	M.8 x 14 (8)	M.10 x 18(8)	M.10 x 18(8)	M12 x 21 (8)
L	5,5	5,5	7	7	8	80/63	10	10	14 (8)	15
L ₁	7	7	9	9	10	10	13	13	15	15
Modelo	87	87	90	90	150	150	165	175	230	255
N ^{H8} (estándar)	50	50	70	70	115	115	130	152	170	180
N ₁ ^{H8}	60	60	70	70	80	80/63	95	110	130	180
0	75	75	85	85	95	95	115	130	165	215
P (estándar)	110	110	125	125	180	180	200	210	280	320
Q	4	4	5	5	6	6	6	6	6	6
S	36,5	36,5	43,5	43,5	53	53	57	67	74	81
S ₁	78	78	92	92	112	112	120	140	155	170
S ₂	2,5	2,5	2,5	2,5	3	3	3	3	3,5	4
Т	100	100	120	120	144	144	172	208	252,5	292,5
U	71	71	85	85	103	103	112	130	144	155
V	121,5	121,5	144	144	174	174	205	238	295	335
V ₁	71,5	71,5	84	84	102	102	119	135	167,5	187,5
V ₂	55	55	64	64	80	80	93	102	125	140
V ₃	35	35	40	40	50	50	60	70	85	100
X	67	67	90	90	82	82	111	111	131	140
X ₁	45°	45°	45°	45°	45°	45°	45°	45°	22º5	22º5

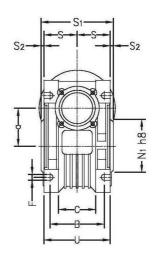
Sobre demanda / on request

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

MOTORREDUCTOR DE VIS-SIN-FIN CON PRE-REDUCTOR

WORM GEARBOX WITH PRE-STAGE HELICAL UNIT

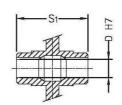

Serie

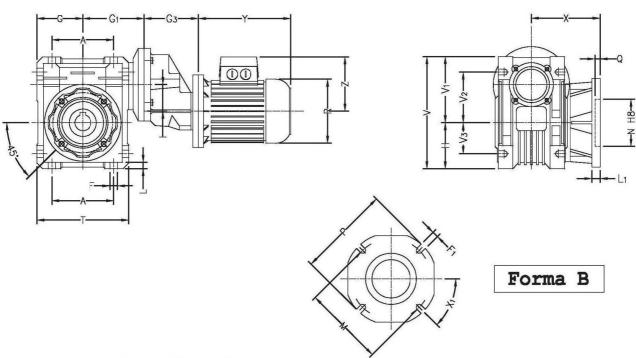

KP-MKP

Series

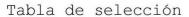
Dimensiones

Dimensions

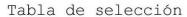



Serie KP

EJE HUECO/ HOLLOW OUT PUT SHAFT


Serie MKP

KK-MKK


Selection table

KW	i=	M2 (Nm)	n2 (Rpm)	Factor servicio	Modelo
0,06	200	36	7	1,7	
	250	37	5,6	1,6	
	300	40	4,7	1,5	
	400	43	3,5	1	
	500	62	2,8	0,7	
	600	75	2,3	0,7	
	750	90	1,9	0,6	30/30
	900	105	1,6	0,6	
	1200	126	1,2	0,4	
	1500	120	0,9	0,4	
	1800	120	0,78	0,3	
	2400	120	0,58	0,2	
	3200	120	0,44	0,2	
0,09	200	41	7	1,7	
-,••	250	46	5,6	1,6	
	300	54	4,7	1,5	
	400	63	3,5	1,5	
	500	87	2,8	0,7	
	600	95	2,3	0,7	
	750	111	1,9	0,6	30/40
	900	125	1,6	0,6	30/40
	1200	151	1,0	100	
		10.00		0,4	
	1500	177	0,9	0,5	
	1800	198	0,78	0,3	
	2400	236	0,58	0,2	
	3200	271	0,44	0,2	
	200	49	7	2,5	
	280	58	5	2,3	
	300	62	4,7	2,3	
	400	71	3,5	1,9	
	500	95	2,8	1,4	
	600	101	2,3	1,4	30/45
	784	119	1,78	1,3	
	1200	162	1,2	1,3	
	1500	185	0,9	1,2	
	1680	207	0,8	0,8	
	2400	245	0,58	0,8	
	3200	282	0,44	0,4	
	200	46	7	2,8	
	250	48	5,6	2,5	
	300	55	4,7	2,6	
	400	65	3,5	2,1	
	500	75	2,8	1,6	
	600	96	2,3	1,6	30/50
	450	112	1,9	1,4	23.33
	900	128	1,6	1,2	
	1200	153	1,0	0,9	
	1500	180	0,9	0,9	
	1800	202	0,9	0,8	
	2400	240	0,78	0,8	
		278			
	3000	210	0,47	0,4	

KK-MKK

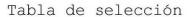
Selection table

KW	i=	M2 (Nm)	n2 (Rpm)	Factor servicio	Modelo
0,09	200	67	7	2,4	
	250	73	5,6	2,5	
	300	81	4,7	3	
	400	98	3,5	2,4	
	500	117	2,8	1,9	30/63
	600	141	2,3	1,6	
	750	164	1,9	1,4	
	900	181	1,6	1,1	
	1200	237	1,2	1	
	1500	276	0,9	0,8	
0,12	200	81	7	0,9	30/40
	250	90	5,6	0,8	
	200	84	7	2,2	
	280	95	5	1,9	
	300	99	4,7	1,6	30/45
	400	108	3,5	1,1	
	500	121	2,8	0,7	
	200	87	7	1,4	
	250	95	5,6	1,4	
	300	108	4,7	1,3	30/50
	400	128	3,5	1,1	
	500	149	2,8	0,9	
	200	89	7	1,8	
	250	97	5,6	1,9	
	300	109	4,7	2,2	
-	400	131	3,5	1,8	
	500	156	2,8	1,5	30/63
	600	188	2,3	1,2	
	750	218	1,9	1	
	900	241	1,6	0,9	
	1200	317	1,2	0,8	
	300	119	4,7	3,5	
	400	147	3,5	2,5	
	500	168	2,8	1,9	40/75
	600	217	2,3	1,8	
	750	262	1,9	1,5	
	900	294	1,6	1,3	
	1200	359	1,2	1	
	1500	435	0,9	0,9	
	1800	486	0,78	0,8	
	500	181	2,8	3,1	
	600	222	2,3	2,8	
	750	259	1,9	2,2	
	900	289	1,6	1,8	40/90
	1200	380	1,2	1,7	-
	1500	442	0,9	1,3	
	1800	493	0,78	1	
	2400	628	0,58	1	
	3000	735	0,47	0,8	
	1500	462	0,93	2,8	2
	1800	517	0,78	2,5	50/110
	2400	668	0,58	1,8	
	3000	798	0,47	1,3	

KK-MKK

Series

Tabla de selección


Selection table

KW	i=	M2	n2 (Ppm)	Factor	Modelo
0.49	200	(Nm)	(Rpm)	servicio	
0,18	200	129	7	1,1	00/50
	250	144	5,6	0,8	30/50
	300	161	4,7	0,9	
	200	135	7	1,2	
	250	145	5,6	1,2	
	300	162	4,7	1,5	
	400	198	3,5	1,2	30/63
	500	235	2,8	1	
	600	283	2,3	0,8	
	200	134	7	2,5	
	250	179	5,6	2,3	
	300	178		-	
		9.19.19.75	4,7	2,3	40/75
	400	220	3,5	1,8	40/75
	500	250	2,8	1,2	
	600	326	2,3	1,2	
	750	395	1,9	1	
	900	440	1,6	0,9	
	200	139	7	3,8	
	250	155	5,6	3,4	
	300	176	4,7	3,4	
	400	230	3,5	2,8	
	500	269	T00001 K240	10000 000	40/90
			2,8	2,4	40/90
	600	332	2,3	1,8	
	750	390	1,9	1,4	
	900	435	1,6	1,2	
	1200	568	1,2	1,1	
	1500	663	0,9	0,9	
	1500	691	0,9	1,9	
	1800	776	0,78	1,7	50/110
	2400	1010	0,58	1,2	
	3000	1193	0,47	0,9	
0,25	200	186	7		
0,20				1,8	
	250	209	5,6	1,7	
	300	248	4,7	1,7	
	400	303	3,5	1,3	40/75
	500	347	2,8	0,9	
	600	455	2,3	0,9	
	200	191	7	2,7	
	250	214	5,6	2,4	
	300	246	4,7	2,5	
	400	319	3,5	2,1	
	500	372	2,8	1,6	40/90
	600	461		1,3	40/30
			2,3		
	750	539	1,9	1,1	
	900	602	1,6	1	
	1200	794	1,2	0,9	
	400	339	3,5	3,4	
	500	405	2,8	2,7	
	600	483	2,3	2,4	
	750	578	1,9	2,1	
	900	658	1,6	2,1	50/110
}	1200	848	1,2	1,4	55,110
	1500	958	0,9	1,4	
	1800	1078	0,78	1,2	
	2400	1393	0,58	0,9	
	1500	1020	0,9	1,8	
	1000	1151	0,78	1,5	63/130
	1800	1151	0,70		
	2400	1463	0,58	1,1	00,100

KK-MKK

Selection table

KW	i=	(Nm)	(Rpm)	servicio	
0,37	200	276	7	1,2	
	250	312	5,5	1,2	40/75
	300	365	4,7	1,1	
	400	450	3,5	0,9	
	200	285	7	1,8	
	250	317	5,6	1,7	
	300	362	4,7	1,7	40/90
	400	472	3,5	1,3	
	500	551	2,8	1,1	
	600	683	2,3	1	
	200	294	7	2,9	
	250	343	5,6	2,6	
	300	387	4,7	3,3	
	400	501	3,5	2,3	
	500	599	2,8	1,9	
	600	717	2,3	1,7	50/110
	750	857	1,9	1,4	
	900	970	1,6	1,3	
	1200	1256	1,2	1	
	1500	1418	0,9	0,9	
	1800	1593	0,78	0,8	
	1500	1512	0,9	1,2	63/130
	1800	1699	0,78	1	
0,55	200	435	7	2	
	250	507	5,6	2,2	
	300	578	4,7	2,2	
	400	744	3,5	1,7	50/110
	500	886	2,8	1,3	
	600	1065	2,3	1,1	
	750	1275	1,9	1	
	900	1449	1,6	0,9	
	200	446	7	3,2	
	250	497	5,6	3,2	
	300	591	4,7	3	
	400	753	3,5	2,2	
	500	895	2,8	1,8	63/130
	600	1076	2,3	1,5	
	750	1323	1,9	1,4	
	900	1511	1,6	1,2	
	1200	1923	1,2	0,9	
	1500	2242	0,9	0,9	
0,75	200	595	7	1,4	
	250	691	5,6	1,3	
	300	784	4,7	1,6	50/110
	400	1017	3,5	1,1	
	500	1211	2,8	0,9	
	600	1453	2,3	0,9	
	200	610	7	2,3	
	250	681	5,6	2,4	
	300	807	4,7	2,1	
	400	1028	3,5	1,6	63/130
	500	1225	2,8	1,2	
	600	1472	2,3	1,2	
	750	1810	1,9	1,1	
	900	2065	1,6	1	
1,1	200	888	7	1,7	
	250	996	5,6	1,6	
	300	1185	4,7	1,4	63/130
	400	1510	3,5	1,2	
	500	1796	2,8	0,9	
	600	2155	2,3	0,8	
1,5	200	1215	7	1,2	
	250	1361	5,6	1,2	63/130
	300	1615	4,7	1,1	
	400	2055	3,5	0,9	
1,85	200	1496	7	0,9	
,	250	1675	5,6	0,9	
	300	1987	4,7	0,9	63/150
	400	2640	3,5	1,7	55/ 150
	500	2720	2,8	1,1	

KK-MKK

Series

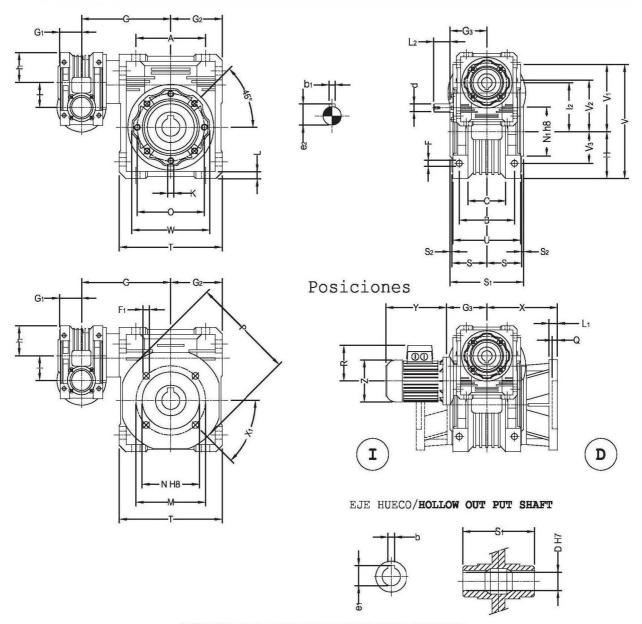
Dimensiones

Dimensions

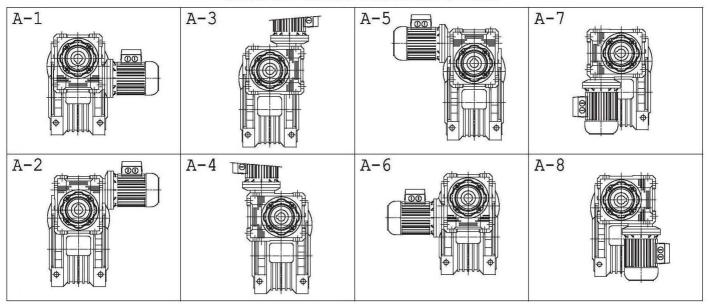
					Modelo				
	30/30	30/40	30/45	30/50	30/63	40/75	40/90	50/110	63/130
Α	54	70	70	80	100	120	140	170	200
а	30	30	30	30	30	40	40/90	50	63
В	45	60	60	70	85	90	100	115	120
b	5	6 6	8	8 8	8 8	8 10	10 10	12	14
b1	3	3	3	3	3	4	4	5	6
С	32	43	43	49	67	72	74	-	-
D ^{H7}	14	18 19	25	25 24	25 28	28 35	35 38	42	45
d ^{J6}	9	9	9	9	9	11	11	14	19
d ₁ ^{J6}	9	9	9	9	9	11	11	14	19
Е	20	20	20	20	20	23	23	30	40
e ₁	16,3	20,8 21,8	28,3	28,3 27,3	28,3 31,3	31,3 38,3	38,3 41,3	45,3	48,8
e ₂	10,2	10,2	10,2	10,2	10,2	12,5	12,5	16	21,5
F	6,5	6,5	6,5	8,5	8,5	11	13	14	16
F,	6,5 (4)	9(4)	9(4)	11(4)	11(4)	14(4)	14(4)	14(8)	16(8)
G	89,5	120	120	130	145	165	182	225	245
G ₁	29	29	29	29	29	36,5	36,5	43,5	53
G ₂	40	50	51,5	60	72	86	103	127,5	147,5
G ₃	55	55	55	55	55	70	70	80	95
G ₄	40	40	40	40	40	50	50	60	72
Н	40	50	50	60	72	86	103	127,5	147,5
h	40	40	40	40	40	50	50	60	72
ı	30	30	30	30	30	40	40	50	63
K	M.6(4)	M.6(4)	M.(6)4	M.8(4)	M.8(8)	M.8(8)	M.10(8)	M.10(8)	M.12(8)
L	5,5	6,5	6,5	7	8	10	11	14	15
L1	6	7	7,5	9	10	13	13	15	15
L2	20	20	20	20	20	23	23	30	40
M	68	87	95	90	150	165	175	230	255
NH8	50	60	60	70	115	130	152	170	180
N ₁ ^{h8}	55	60	52	70	80	95	110	130	180
0	65	75	70	85	95	115	130	165	215
Р	80	110	110	125	180	200	210	280	320
Q	4	4	4	5	6	6	6	6	6
S	28	36,5	39	43,5	53	57	67	74	81
S ₁	63	78	83	92	112	120	140	155	170
S ₂	2,5	2,5	2,5	2,5	3	3	3	3,5	4
T	80	100	103	120	144	172	208	252,5	292,5
U	56	71	71	85	103	112	130	144	155
V	97	121,5	125	144	174	205	238	295	335
V ₁	57	71,5	75	84	102	119	135	167,5	187,5
V ₂	44	55	60	64	80	93	102	125	140
V ₃	27	35	35	40	50	60	70	85	100
Х	54,5	67	73	90	82	111	111	131	140
X ₁	90°	45°	45°	45°	45°	45°	45°	22°5	22°5

Sobre demanda / On request

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91



KK-MKK


Series

Dimensiones

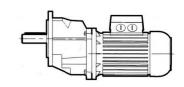
Dimensions

POSICIONES DE MONTAJE / MOUNTING POSITIONS

Motorreductores engranajes coaxiales/ Coaxial motor reducers/ Motorreducteurs a engranages

Pot.: Desde 0,06 Kw a 4 Kw Rel.: Desde 1/3-1/6-1/9

Págs.: 55-56



Pot.: Desde 0,06 Kw a 22 Kw

Rel. Desde 1/2,5 a 1/560

Págs.: 57-87

Series

Tabla de selección **Selection table**

MOTORREDUCTOR 1 TREN DE ENGRANAJES

SINGLE GEAR MOTOR REDUCER

n₁=1400rpm

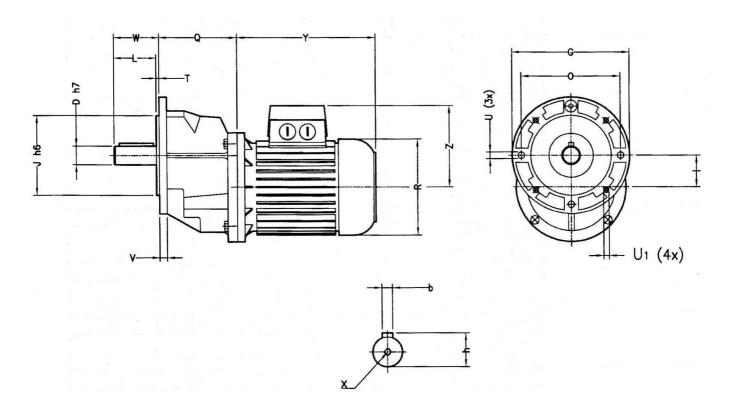

CV	Kw	i=	n ₂ Rpm	M2 (Nm)	Fs	Modelo	Motor	Pesc
0,08	0,06	3,53	397	1,4	>3			
		6,18	226	2,5	>3		56	4,3
		7,77	180	3,1	2,9	MP		
0,12	0,09	3,53	397	2,1	>3	63		
		6,18	226	3,7	2,7		56	4,3
		7,77	180	4,7	1,9			
0,16	0,12	3,53	397	2,8	>3			
		6,18	226	5	2		56	5,2
		7,77	180	6,2	1,4	MP		
0,25	0,18	3,53	397	4,2	2,8	63		
		6,18	226	7,4	1,3		63	5,6
		7,77	180	9,3	1			
0,33	0,25	3,53	397	6	>3			
		6,4	220	11	2,1		71	8
		8	175	13	1,5	MP		
0,5	0,37	3,53	397	9	3	71		
		6,4	220	16	1,4		71	8,4
		8	175	20	1			
0,75	0,55	3,42	411	13	>3			
		6,4	219	24	2,8	MP	80	12,8
		8,3	169	31	2	80		
1	0,75	3,42	411	17	>3			
		6,4	219	32	2		80	14,1
		8,3	169	42	1,4			
1,5	1,1	3,42	411	25	2,7			
		6,4	219	47	1,4		90-S	16,8
		8,3	169	61	1			
2	1,5	3,42	411	34	2			
		6,4	219	64	1	MP	90-L	17,9
		8,3	169	83	0,7	80		
2,5	1,8	3,42	411	41	1,7			
		6,4	219	77	0,8		90-L	20,2
		8,3	169	98	0,7			
3	2,2	3,86	361	57	>3			
		6,23	225	92	1,7		100-L	25,8
		8,4	167	124	1,1			
4	3	3,86	361	80	2,9	MP		
		6,23	225	125	1,3	100	100-L	27,8
		8,4	167	169	0,8			
5,5	4	3,86	361	102	2,3			
		6,23	225	163	1		112	35,8
		8,4	167	210	0,7			

Tabla de dimensiones

Serie MP

Dimensiones Dimensions

Modelo	D ^{H7}	G	I	J ^{h6}	L	0	Q	U	U ₁	Т	V	W	b	h	Х
63	14(11)	105	32	70	30	85	83	6,5	M·6	2,5	7	32,5	5	16	M·5
71	19	120	40	80	40	100	90	6,5	M·6	2,5	7,5	42,5	6	21,5	M·8
80	24(28)	140	50	95	49,5	115	114	9	M·8	2,5	10,5	52	8	27	M·8
100	28	200	63	130	57,5	165	177	10,5	10,5	2,5	12	60	8	31	M·10

Disposición brida acople motor / motor flange cooling disposition

Modelo	IEC 56	IEC 63	IEC 71	IEC 80	IEC 90	IEC 100/112
63	B·14 Ø 80	B·14 Ø 90				
	B·5 Ø 120	B·5 Ø 140				
71			B·14 Ø 105			
			B·5 Ø 160			
80)			B·14 Ø 120	B·14 Ø 140	
				B·5 Ø 200	B·5 Ø 200	
100						B·14 Ø 160
						B·5 Ø 250

La gama MP es un reductor de 1 tren de engranajes, en acero cementado y templado, rectificado de flancos, carcasa en aluminio inyectado, lubricado de por vida.

 $\textbf{R-Z-Y} \ \ Consultar\ pág.\,91/\ See\ pag.\,91/\ CF\ page\ 91$

Serie -RD

COAXIAL GEAR REDUCER

Series -MRD

MRD

MRD....B

 $N_1 = 1400 \text{ Rpm}$

Kw	In	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,06	2,5	2,57	530	1	>3,5	
	3,15	3,28	415	1,30	>3,5	
	4	4,26	320	1,70	>3,5	
	5	5,28	258	2,10	>3,5	
	6,3	6,25	217	2,50	>3,5	
	8	7,98	170	3,20	>3,5	
	10	10,36	131	4,20	>3,5	
	12,5	12,84	106	5,20	>3,5	02
	16	16,32	83	6,60	>3,5	
	20	21,53	63	8,70	>3,5	
	25	26,75	51	10,80	>3,5	
	31,5	30,22	45	12,20	>3,5	
	35,5	34,68	40	13,90	>3,5	
	40	43,07	32	17,40	2,01	
		36,89	37	14,90	3,48	03
	50	48,67	28	19,70	1,83	02
		47,07	29	19	2,73	03
	63	61,14	22	24,70	2,10	03
		61,67	22	25	2,81	12
	80	75,78	18	30,70	1,70	03
		80,43	17	33	3,07	13
	100	96,29	14	38,90	1,34	03
		100,60	14	41	2,45	13
	125	127,05	10,70	51,40	1,01	03
		130,84	10,40	53	1,89	13
	160	157,81	8,60	63,80	0,81	03
		165,08	8,20	67	1,50	13
	180	178,31	7,60	72,10	0,80	03
	200	204,58	6,60	45	0,80	03
		206,46	6,60	84	1,20	13
	250	254,11	5,40	45	0,80	03
		268,54	5,10	109	0,92	13
	280	287,13	4,70	45	0,80	03
	315	324,44	4,20	45	0.80	03

 I_n =Relación de velocidad nominal

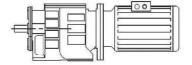
I_r=Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes


Serie -RD

Series -MRD

REDUCTORES DE ENGRANAJES COAXIALES

COAXIAL GEAR REDUCER

MRD

MRD....B

$N_1 = 1400 \text{ Rpm}$

Kw	In	Ir	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,09	2,5	2,57	530	1,6	>3,5	
	3,15	3,28	415	2	>3,5	
	4	4,26	320	2,60	>3,5	
	5	5,28	258	3,20	>3,5	
	6,3	6,25	217	3,80	>3,5	
	8	7,98	170	4,80	>3,5	
	10	10,36	131	6,30	>3,5	
	12,5	12,84	106	7,80	>3,5	
	16	16,32	83	9,90	>3,5	02
	20	21,53	63	13,10	>3,5	
	25	26,75	51	16,20	3,2	
	31,5	30,22	45	18,30	2,84	
	35,5	34,68	40	20,90	1,68	
	40 50	43,07	32	26,10	1,34	
		36,89	37	22,40	2,32	03
		39,08	35	23,70	2,95	12
		48,67	28	29,50	1,22	02
		47,07	29	28,60	1,82	03
		48,12	28	29,20	2,4	12
		52,2	26	32	3,12	13
	63	61,14	22	37,1	1,4	03
		61,67	22	37	1,88	12
		66,03	21	40	2,5	13
	80	75,78	18	46	1,13	03
		80,43	17	49	2,05	13
	100	96,29	14	58,4	0,89	03
		100,6	14	61	1,64	13
	125	130,84	10,4	79	1,26	13
	160	165,08	8,2	100	1	13
	200	206,46	6,6	125	8,0	13

 ${\tt I}_{\tt n}\!\!=\!\!{\tt Relaci\'{o}n}~{\tt de}~{\tt velocidad}~{\tt nominal}$

 I_r =Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

Serie -RD

COAXIAL GEAR REDUCER

Series -MRD

MRD

MRD....B

$N_1 = 1400 \text{ Rpm}$

Kw	I _n	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,12	2,50	2,57	530	2,1	>3,5	
	3,15	3,28	415	2,7	>3,5	
	4	4,26	320	3,4	>3,5	
	5	5,28	258	4,3	>3,5	
	6,30	6,25	217	5,1	>3,5	
	8	7,98	170	6,5	>3,5	
	10	10,36	131	8,4	>3,5	
	12,50	12,84	106	10,4	>3,5	02
	16	16,32	83	13,2	>3,5	
	20	21,53	63	17,4	2,93	
	25	26,75	51	21,6	2,40	
	31,50	30,22	45	24,4	2,13	
	35,50	34,68	40	27,8	1,26	
	40	43,07	32	34,8	1	
		36,89	37	29,8	1,74	03
		39,08	35	32	2,21	12
		40,10	34	32	3,05	13
	50	48,67	28	39,4	0,91	02
	3////	47,07	29	38,1	1,37	03
		48,12	28	39	1,80	12
		52,20	26	42	2,34	13
	63	61,14	22	49,5	1,05	03
		61,67	22	50	1,41	12
		66,03	21	53	1,87	13
	80	75,78	18	61,3	0,85	03
		80,43	17	65	1,54	13
		81,52	16,7	66	3,03	23
	100	100,60	14	81	1,23	13
		105,43	12,9	85	2,34	23
	125	130,84	10,4	106	0,94	13
		124,16	11	100	1,99	23
	160	165,08	8,2	134	0,75	13
		164,94	8,2	133	1,50	
	200	209,25	6,5	169	1,18	
	250	270,63	5	219	0,91	23
	315	318,70	4,3	258	0,78	

I_n=Relación de velocidad nominal

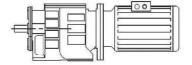
 I_r =Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes



Serie -RD

Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	I _n	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,18	2,50	2,57	533	3,10	>3,5	
	3,15	3,28	418	3,90	>3,5	
	4	4,26	322	5,10	>3,5	
	5	5,28	260	6,40	>3,5	
	6,30	6,25	219	7,50	>3,5	02
	8	7,98	172	9,60	>3,5	
	10	10,36	132	12,50	>3,5	
	12,50	12,84	107	15,50	3,23	
	16	16,32	84	19,70	2,59	
	20	21,53	64	25,90	1,97	
	25	26,75	51	32,20	1,61	
	25	26,52	51	32	2,90	12
	31,50	30,22	45	36,40	1,43	02
		32,65	42	40	2,38	12
	35,50	34,68	40	41,8	0,84	02
	40	36,89	37	44,4	1,17	03
	2.09.0	39,08	35	47	1,48	12
		40,10	34	49	2,03	13
	50	47,07	29	56,7	0,92	03
		48,12	28	58	1,20	12
		52,20	26	63	1,56	13
		52,17	26,1	63	3,15	23
	63	61,14	22	73,6	0,80	03
		61,67	22	75	0,94	12
		66,03	21	80	1,25	13
		64,26	21,2	78	2,57	23
	80	80,43	17	98	1,02	13
		81,52	16,7	99	2,02	23
	100	100,60	14	122	0,82	13
		105,43	12,9	128	1,56	
	125	124,16	11	151	1,33	23
	160	164,94	8,2	200	1	
	200	209,25	6,5	254	0,79	

 ${\tt I_n=Relaci\'on\ de\ velocidad\ nominal}$

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

Serie -RD Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

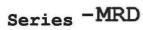
Kw	I _n	Ir	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,25	2,5	2,57	533	4,3	>3,5	
	3,15	3,28	418	5,5	>3,5	
	4	4,26	322	7,1	>3,5	
	5	5,28	260	8,8	>3,5	
	6,3	6,25	219	10,5	>3,5	02
	8	7,98	172	13,3	>3,5	
	10	10,36	132	17,3	2,88	
	12,5	12,84	107	21,5	2,33	
	16	16,32	84	27,3	1,87	
		16,3	85	27	3,36	12
	20	21,53	64	36	1,42	02
		20,39	68	34	2,72	12
	25	26,75	51	44,7	1,16	02
		26,52	52	44	2,12	12
	31,5	32,65	42	54	1,74	
	40	36,89	37	61,7	0,84	03
		39,08	35	65	1,08	12
		40,1	34	67	1,49	13
		39,39	35	65	2,11	22
		40,76	34	68	2,94	23
	50	48,12	29	80	0,88	12
		52,2	26	87	1,14	13
		50,76	27	84	1,64	22
		52,17	26	87	2,3	23
		50,73	27	84	3,37	32
	63	66,03	21	110	0,91	13
	- Caraca	62,13	22	103	1,35	22
		64,26	21	107	1,87	23
		63,33	22	105	2,71	32
	80	80,43	17	134	0,75	13
		81,52	17	135	1,48	23
		76,31	18	127	3,33	33
	100	105,43	13	175	1,14	23
		99,54	14	165	2,56	33
	125	124,16	11	206	0,97	23
	372-572	130,9	10,5	217	1,95	33
		128,71	10,7	214	2,95	43
	160	164,94	8,4	274	0,73	23
		167,8	8,2	279	1,53	33
		157,36	8,8	261	2,68	43
	200	197,5	7	328	1,3	33
		206,95	6,7	344	1,84	43
	250	257,6	5,4	428	1	33
		258,38	5,3	429	1,63	43
	315	307,21	4,5	510	0,84	33
		318,46	4,3	529	1,37	43

 I_n =Relación de velocidad nominal

I_r=Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 ${\rm M_2}{=}{\rm Par}$ de salida del reductor


Fs=Factor de servicio

.2=2 Trenes de engranajes

Serie -RD

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	I _n	I,	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,37	2,5	2,57	537	6,3	>3,5	
	3,15	3,28	421	8,1	>3,5	
	4	4,26	324	10,5	3,44	02
	5	5,28	260	13,1	2,91	
	6,3	6,25	221	15,4	3,12	
	8	7,98	173	19,6	2,5	
	10	10,36	133	25,5	1,96	
	1	10,58	130	26	3,42	12
	12,5	12,84	107	31,6	1,62	02
	1124214	13,38	103	33	2,74	12
	16	16,32	85	40,1	1,27	02
	12000	16,3	85	40	2,27	12
	20	21,53	64	52,9	0,96	02
		20,39	68	50	1,84	12
	25	26,75	52	65,7	0,8	02
		26,52	52	65	1,43	12
		26,73	52	66	2,85	22
	31,5	32,65	42	80	1,17	12
		31,48	44	77	2,44	22
	40	39,08	35	96	0,73	12
	######################################	40,1	34	99	1	13
		39,39	35	97	1,43	22
		40,76	34	100	1,99	23
		38,57	36	95	2,99	32
	50	52,2	26	128	0,77	13
		50,76	27	125	1,11	22
		52,17	26	128	1,56	23
		50,73	27	125	2,28	32
	63	62,13	22	153	0,91	22
		64,26	21	158	1,27	23
		63,33	22	156	1,83	32
		64,84	21	159	2,64	33
	80	81,52	17	200	1	23
		76,31	18	188	2,25	33
		82,25	18,4	184	3,8	43
	100	105,43	13	259	0.77	23
	100	99,54	14	245	1,73	33
		102,5	14,1	241	2,9	43
	125	130,9	10,5	322	1,32	33
	.20	124,13	10,7	316	2,21	43
	160	167,8	8,2	413	1,03	33
		160,69	8,8	387	1,8	43
	200	197,5	7	486	0,88	33
	200	207,34	6,7	509	1,37	- 55
	250	258,38	5,3	635	1,1	43
	315	200,00	4,3	783	1, 1	73

 I_n =Relación de velocidad nominal

 I_r =Relación de velocidad real

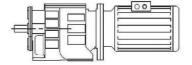
 $N_2 = Revoluciones$ de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

^{.2=2} Trenes de engranajes

^{.3=3} Trenes de engranajes



Serie -RD

COAXIAL GEAR REDUCER

Series -MRD

MRD

MRD....B

N₁ = 1400 Rpm

Kw	I _n	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,55	2,5	2,57	541	9,30	3,22	
	3,15	3,28	424	11,90	2,78	02
	4	4,26	327	15,40	2,33	
		4,01	344	14,70	3,39	12
	5	5,28	262	19,30	1,97	02
		5,07	272	18,50	2,85	12
	6,3	6,25	222	22,70	2,12	02
	8	7,98	174	28,90	1,68	02
	10	8,13	170	30	2,96	12
	10	10,36	134	37,60	1,33	02
		10,58	130	39	2,30	12
	12,5	12,84	108	46,60	1,07	02
		13,38	103	49	1,84	12
	16	16,32	85	59,2	0,86	02
	10	16,3	85	60	1,53	12
		16,29	85	60	3,07	22
	20	20,39	68	75	1,23	12
		20,67	67	76	2,45	22
	25	26,52	52	97	0,96	12
		26,73	52	98	1,92	22
	31,5	32,65	42	119	0,79	12
		31,48	44	115	1,64	22
		33,21	42	121	3,30	32
	40	39,39	35	144	0,96	22
		40,76	34	149	1,34	23
		38,57	36	141	2,01	32
		41,54	33	152	2,96	42
		38,06	36	139	3,01	33
	50	50,76	27	186	0,75	22
		52,17	26	191	1,05	23
		50,73	27	185	1,53	32
		50,30	27	184	2,20	42
		48,77	28	178	2,36	33

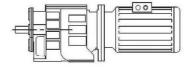
 ${\tt I}_{\tt n}\!\!=\!\!{\tt Relaci\'on}~{\tt de}~{\tt velocidad}~{\tt nominal}$

 I_r =Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 ${\rm M_2}{=}{\rm Par}$ de salida del reductor

Fs=Factor de servicio


.2=2 Trenes de engranajes

Serie -RD Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	I _n	I,	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,55	63	64,26	21	235	0,85	23
		63,33	22	231	1,23	32
		62,96	22	230	1,95	42
		64,84	21	237	1,78	33
		63,75	21,6	233	2,69	43
		66,67	20,8	242	3,51	52
	80	76,31	18	279	1,51	33
		82,25	18,4	274	2,55	43
	100	99,54	14	364	1,16	33
		102,50	14,1	358	1,95	43
	125	130,90	10,5	478	0,89	33
		124,13	10,7	470	1,49	43
		129,80	10,7	461	2,82	53
	160	160,69	8,8	575	1,21	43
		157,14	8,8	558	2,33	53
	200	207,34	6,7	756	0,92	43
		195,82	7,1	696	1,87	
		201,57	6,9	716	3,21	53
	250	264	5,3	938	1,39	
		265,5	5,2	943	2,44	63
	315	332,31	4,2	1180	0,76	53
	1000000	332	4,2	1179	1,95	
	355	373,33	3,7	1326	1,73	63
	450	448	3,1	1591	1,45	
	560	560	2,5	1989	1,16	7

 I_n =Relación de velocidad nominal

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 ${\rm M_2}{=}{\rm Par}$ de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

Serie -RD

COAXIAL GEAR REDUCER

Series -MRD

MRD

MRD....B

 $N_1 = 1400 \text{ Rpm}$

Kw	I _n	Ir	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,75	2,5	2,57	541	12,7	2,36	02
		2,53	546	12,6	3,39	12
	3,15	3,28	424	16,2	2,04	02
		3,08	450	15,3	2,99	12
	4	4,26	327	21,1	1,71	02
		4,01	345	19,9	2,50	12
	5	5,28	263	26,1	1,46	02
		5,07	273	25	2,10	12
	6,3	6,25	222	30,9	1,55	02
	- 5377	6,69	207	33	2,62	12
	8	7,98	174	39,5	1,24	02
		8,13	170	40	2,18	12
	10	10,36	134	51,3	0,98	02
		10,58	131	53	1,69	12
	12,5	12,84	108	63,5	0,80	02
		13,38	103	66	1,36	12
		13,23	105	66	2,76	22
	16	16,3	85	81	1,12	12
		16,29	85	81	2,26	22
	20	20,39	68	101	0,91	12
		20,67	67	103	1,80	22
	25	26,52	52	132	0,71	12
		26,73	52	133	1,41	22
		25,26	55	125	3,15	32
	31,5	31,48	44	156	1,21	22
		33,21	42	165	2,43	32
	40	39,39	35	196	0,71	22
		40,76	34	202	0,98	23
		38,57	36	192	1,48	32
		41,54	33	206	2,18	42
		38,06	36	189	2,22	33
		37,42	37	186	3,76	43

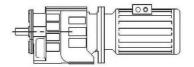
I_n=Relación de velocidad nominal

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio


.2=2 Trenes de engranajes

Serie -RD Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	In	I _r	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
0,75	50	52,17	27	259	0,77	23
		50,73	27	252	1,13	32
		50,3	28	250	2,41	42
		48,77	28	242	1,74	33
		47,95	28,9	238	2,94	43
		53,33	26,1	264	3,22	52
	63	63,33	22	315	0,91	32
		62,96	22	313	1,43	42
		64,84	21	322	1,31	33
		63,75	21,7	317	2,20	43
		66,67	20,8	330	2,58	52
	80	76,31	18	379	1,11	33
		75,03	18,5	373	1,87	43
		77,26	18	374	3,47	53
	100	99,54	14	494	0,86	33
		97,86	14,20	486	1,44	43
		96,28	14,40	466	2,79	53
	125	124,13	10,80	639	1,10	43
		129,8	10,70	629	2,07	53
	160	160,69	8,80	781	0,90	43
		157,14	8,80	761	1,71	53
		157,33	8,80	762	3,02	63
	200	195,82	7,10	949	1,37	53
		201,57	6,90	976	2,36	63
	250	264	5,30	1279	1,02	53
		265,5	5,20	1286	1,79	
	315	332	4,20	1608	1,43	
	355	373,33	3,70	1808	1,27	63
	450	448	3,10	2170	1,06	
	560	560	2,50	2712	0,85	

I_n=Relación de velocidad nominal

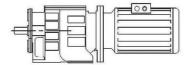
I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes



Serie -RD

Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	I _n	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
1,1	2,5	2,53	548	18,4	2,34	
	3,15	3,08	451	22,4	2,05	12
	4	4,01	347	29	1,71	
	5	5,07	274	37	1,43	
		5,01	277	36	2,89	22
	6,3	6,69	208	49	1,79	12
	8	8,13	171	59	1,49	12
		8,27	168	60	2,95	22
	10	10,58	131	77	1,16	12
		10,33	135	75	2,39	22
	12,5	13,38	104	97	0,93	12
	,	13,23	105	96	1,89	22
	16	16,3	85	118	0,77	12
		16,29	85	118	1,55	22
		16,45	84	119	3,24	32
	20	20,67	67	150	1,23	22
		19,36	72	141	2,77	32
	25	26,73	52	194	0,97	22
		25,26	55	183	2,15	32
		24,48	57	178	3,65	42
	31,5	31,48	44	228	0,83	22
		33,21	42	241	1,66	32
		29,64	47	215	3	42
	40	38,57	36	280	1,01	32
		41,54	33	301	1,5	42
		38,06	37	276	1,52	33
		41,88	37,1	272	2,57	43
		40,48	34,8	292	2,92	52
	50	50,73	27	368	0,77	32
		50,3	28	365	1,23	42
		48,77	28	354	1,19	33
		51,08	29	348	1,8	43
		53,33	26,3	384	2,21	52
	63	62,96	22	457	0,98	42
		64,84	21	471	0,9	33
		63,75	21,8	463	1,51	43
		66,67	21	480	1,77	52
		59,88	23,4	422	3,05	53

 ${\tt I}_{\tt n}\!\!=\!\!{\tt Relaci\'{o}n}~{\tt de}~{\tt velocidad}~{\tt nominal}$

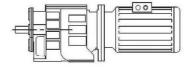
I_r=Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes


Serie -RD

Series -MRD

REDUCTORES DE ENGRANAJES COAXIALES

COAXIAL GEAR REDUCER

MRD

MRD....B

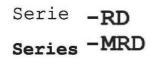
N₁ = 1400 Rpm

Kw	In	I _r	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
1,1	80	76,31	18	554	0,76	33
		82,25	18,5	545	1,28	43
		77,26	18,1	545	2,39	53
	100	102,5	14,2	710	0,98	43
		96,28	14,5	679	1,91	53
		104,08	13,5	734	3,13	63
	125	129,8	10,8	916	1,42	53
		125,87	11,1	888	2,59	63
	160	157,14	8,9	1108	1,17	53
		157,33	8,9	1110	2,07	63
	200	195,82	7,1	1381	0,94	53
		201,57	6,9	1422	1,62	63
	250	264	5,3	1862	0,7	53
		265,5	5,3	1873	1,23	
	315	332	4,2	2342	0,98	63
	355	373,33	3,8	2633	0,87	
	450	448	3,1	3160	0,73	

 I_n =Relación de velocidad nominal

 I_r =Relación de velocidad real

 N_2 =Revoluciones de salida del reductor


 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

COAXIAL GEAR REDUCER

MRD

MRD....B

 $N_1 = 1400 \text{ Rpm}$

Kw	In	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
1,5	2,5	2,55	550	25	3,42	
	3,15	3,13	447	31	2,99	
	4	3,92	357	38	2,56	
	5	5,01	279	49	2,14	
	6,3	6,72	208	66	2,65	22
	8	8,27	169	81	2,18	
	10	10,33	135	102	1,76	
	12,5	13,23	106	130	1,39	
		12,38	113	122	3,13	32
	16	16,29	86	160	1,14	22
		16,45	85	162	2,39	32
	20	20,67	68	203	0,91	22
		19,36	72	190	2,05	32
		19,64	71	193	3,36	42
	25	26,73	52	263	0,71	22
	3300	25,26	55	248	1,59	32
		24,48	57	241	2,7	42
	31,5	33,21	42	326	1,23	32
		29,64	47	291	2,23	42
	40	38,57	36	379	0,75	32
	- 1) Add (2) (4)	41,54	34	408	1,1	42
		38,06	37	374	1,12	33
		41,88	37,4	368	1,9	43
		40,48	34,6	398	2,14	52
		39,33	35,6	378	3,36	53
	50	50,3	28	494	0,91	42
	(575)(48,77	29	479	0,88	33
		51,08	29.2	471	1,49	43
		53,33	26,3	524	1,62	52
		47,98	29,2	462	2,77	53
		49,8	28,1	489	3,27	62
	63	63,75	22	626	1,11	43
		66,67	21	655	1,3	52
		59,88	23,4	576	2,24	53
		56	25	550	2,91	62
	80	82,25	18,7	737	0,95	43
		77,26	18,1	743	1,75	53
		81,29	17,2	782	2,94	63
	100	96,28	14,5	926	1,4	53
		104,08	13,5	1001	2,3	63
	125	129,8	10,8	1248	1,04	53
		125,87	11,1	1211	1,9	63
	160	157,14	8,9	1511	0,86	53
		157,33	8,9	1513	1,52	
	200	201,57	6,9	1939	1,18	63
	250	265,5	5,3	2554	0,9	
	315	332	4,2	3193	0,72	

I_n=Relación de velocidad nominal

I_r=Relación de velocidad real

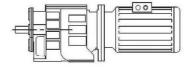
 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

^{.2=2} Trenes de engranajes

^{.3=3} Trenes de engranajes


Serie -RD

Series -MRD

REDUCTORES DE ENGRANAJES COAXIALES

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	I _n	I _r	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
1,85	2,5	2,55	550	31	2,79	
	3,15	3,13	447	38	2,44	
	4	3,92	357	47	2,09	
	5	5,01	279	60	1,74	22
	6,3	6,72	208	81	2,16	
	8	8,27	169	100	1,78	1
	10	10,33	135	125	1,44	
		9,66	145	116	3,23	32
	12,5	13,23	106	159	1,14	22
		12,36	113	149	2,56	32
	16	16,29	86	196	0,93	22
		16,45	85	198	1,95	32
		15,22	92	183	3,12	42
	20	20,67	68	249	0,74	22
		19,36	72	233	1,67	32
		19,64	71	237	2,45	42
	25	25,26	55	304	1,3	32
		24,48	57	295	2,2	42
	31,5	33,21	42	400	1	32
		29,64	47	357	1,82	42
		31,43	44,5	370	3,35	52
	40	41,54	34	501	0,9	42
		38,06	37	459	0,91	33
		41,88	37,4	451	1,55	43
		40,48	34,6	477	1,78	52
		39,33	35,6	454	2,8	53
		40,5	34,6	477	3,35	62
	50	48,77	29	588	0,72	33
		47,95	29,2	578	1,21	43
		53,33	26,3	629	1,35	52
		47,98	29,2	554	2,31	53
		49,8	28,1	587	2,73	62
	63	63,75	22	768	0,91	43
		66,67	21	786	1,08	52
		59,88	23,4	691	1,87	53
		56	25	660	2,42	62
		61,88	22,6	714	3,08	63
	80	82,25	18,7	904	0,78	43
		77,26	18,1	892	1,46	53
		81,29	17,2	938	2,45	63
	100	96,28	14,5	1111	1,17	53
		104,08	13,5	1201	1,91	63
	125	129,8	10,8	1498	0,87	53
	1877	125,87	11,1	1453	1,58	63
	160	157,14	8,9	1814	0,72	53
		157,33	8,9	1816	1,27	
	200	201,57	6,9	2327	0,99	63
	250	265,5	5,3	3064	0,75	

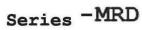
I_n=Relación de velocidad nominal

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio


^{.2=2} Trenes de engranajes

^{.3=3} Trenes de engranajes

Serie -RD

COAXIAL GEAR REDUCER

MRD

MRD....B

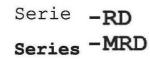
N₄ = 1400 Rpm

Kw	In	I _r	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
2,2	2,5	2,55	558	36	2,36	
	3,15	3,13	453	45	2,07	
	4	3,92	363	56	1,77	
	5	5,01	283	71	1,48	22
		5,33	266	76	3,1	
	6,3	6,72	211	95	1,83	
	8	8,27	172	117	1,51	
		7,72	184	110	3,39	32
	10	10,33	137	147	1,22	22
		9,66	147	137	2,74	32
	12,5	13,23	107	188	0,96	22
		12,38	115	176	2,17	32
		12,2	116	173	3,58	42
	16	16,29	87	231	0,79	22
		16,45	86	234	1,65	32
		15,22	93	216	3	42
	20	19,36	73	275	1,42	32
		19,64	72	279	2,32	42
	25	25,26	56	359	1,1	32
		24,48	58	348	1,86	42
		25,99	54	372	3,31	52
	31,5	33,21	43	472	0,85	32
		29,64	48	421	1,54	42
		31,43	45	450	2,76	52
	40	41,88	38	532	1,31	43
		40,48	35	579	1,47	52
		39,33	36	551	2,31	53
		40,5	35	579	2,76	62
	50	51,08	29,6	681	1,02	43
		53,33	26	763	1,11	52
		47,98	29	672	1,9	53
		49,8	28	712	2,25	62
		48,95	29	686	3,21	63
	63	66,67	21	954	0,89	52
		59,88	24	839	1,54	53
		56	25	801	2	62
		61,88	23	867	2,54	63
	80	77,26	18	1082	1,2	53
		81,29	17	1139	2,02	63
	100	96,28	15	1349	0,96	53
		104,08	14	1458	1,56	63
	125	129,8	11	1818	0,72	53
		125,87	11	1763	1,3	
	160	157,33	9	2204	1,04	63
	200	201,57	7	2823	0,81	

 I_n =Relación de velocidad nominal

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor


 ${\rm M_2}{=}{\rm Par}$ de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

COAXIAL GEAR REDUCER

MRD

MRD....B

 $N = 1400 \, \text{Rnm}$

Kw	In	I _r	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
3	2,5	2,55	562	49	1,75	
	3,15	3,13	456	60	1,53	22
		3,32	430	64	3,21	
	4	3,92	365	75	1,31	
		4,16	344	80	2,75	32
	5	5,01	285	96	1,09	22
		5,33	268	103	2,29	32
	6,3	6,72	213	129	1,35	22
		6,26	228	120	3,06	32
	8	8,27	173	159	1,11	22
		7,72	18 5	148	2,51	32
	10	10,33	138	199	0,9	22
		9,66	148	186	2,03	32
	line and the second	10	143	192	2,91	42
	12,5	13,23	108	254	0,71	22
		12,38	116	238	1,6	32
		12,2	117	235	2,63	42
	16	16,45	87	317	1,22	32
		15,22	94	293	1,96	42
	20	19,36	74	373	1,05	32
		19,64	73	378	1,71	42
		20,3	70	393	3,1	52
	25	25,26	57	486	0,81	32
		24,48	58	471	1,38	42
		25,99	55	503	2,44	52
	31,5	29,64	48	570	1,14	42
		31,43	45	609	2,04	52
		33,2	43	643	3,45	62
	40	41,88	38,2	720	0,97	43
		40,48	35	784	1,08	52
		39,33	36	746	1,7	53
		40,5	35	784	2,04	62
		39,71	36	753	2,92	63
	50	53,33	27	1033	0,82	52
		47,98	30	910	1,41	53
		49,8	29	965	1,66	62
		48,95	29	928	2,37	63
	63	59,88	24	1136	1,14	53
		56	2 5	1085	1,48	62
		61,88	23	1174	1,87	63
	80	77,26	18	1465	0,89	53
		81,29	18	1542	1,49	63
	100	96,28	15	1826	0,71	53
		104,08	14	1974	1,17	
	125	125,87	11	2387	0,96	63
	160	157,33	9	2984	0,77	

I_n=Relación de velocidad nominal

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

Serie -RD

Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

N, = 1400 Rpm

Kw	In	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
4	2,5	2,7	528	69	2,74	
	3,15	3,32	429	86	2,4	32
	4	4,16	343	107	2,05	
		3,96	360	102	3,72	42
	5	5,33	267	137	1,71	32
		4,83	295	124	3,06	42
	6,3	6,26	228	161	2,29	32
	200	6,29	227	162	3,5	42
	8	7,72	185	199	1,87	32
		7,86	181	202	3,06	42
	10	9,66	148	249	1,51	32
		10	143	257	2,41	42
	12,5	12,38	115	319	1,2	32
		12,2	117	314	1,97	42
	16	16,45	87	424	0,91	32
		15,22	94	392	1,65	42
		15,45	92	398	3,02	52
	20	19,36	74	498	0,78	32
		19,64	73	506	1,28	42
		20,3	70	522	2,34	52
	25	24,48	58	630	1,03	42
		25,99	55	669	1,84	52
		24,62	58	633	3,32	62
	31,5	29,64	48	763	0,85	42
		31,43	45	809	1,53	52
		33,2	43	854	2,6	62
	40	40,48	35	1042	0,82	52
		39,33	36	991	1,28	53
		40,5	35	1042	1,54	62
		39,71	36	1001	2,2	63
	50	47,98	30	1209	1,06	53
		49,8	29	1282	1,25	62
		48,95	29	1233	1,78	63
	63	59,88	24	1509	0,85	53
		56	25	1441	1,1	62
		61,88	23	1559	1,41	
	80	81,29	18	2048	1,12	63
	100	104,08	14	2623	0,88	
	125	125,87	11	3172	0,73	

I_n=Relación de velocidad nominal

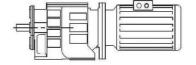
I_r=Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 $M_2 = Par$ de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes



Serie -RD

Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	In	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
5,5	2,5	2,49	579	87	3,50	42
	3,15	3,11	463	109	2,94	
	4	3,96	364	139	2,73	
	5	4,83	298	169	2,36	
	6,3	6,29	229	220	2,81	
	8	7,86	183	275	2,25	
	10	10	144	350	1,77	
		9,92	145	347	3,40	52
	12,5	12,20	118	427	1,45	42
		12,22	118	428	2,78	52
	16	15,22	95	533	1,22	42
		15,45	93	541	2,22	52
	20	19,64	73	688	0,95	42
		20,30	71	711	1,72	52
		20,67	70	724	2,90	62
	25	25,99	55	910	1,35	52
		24,62	59	862	2,44	62
	31,5	31,43	46	1101	1,13	52
		33,20	43	1163	1,91	62
	40	39,33	37	1349	0,94	53
		40,50	36	1418	1,13	62
		39,71	36	1361	1,62	63
	50	47,98	30	1645	0,78	53
		49,80	29	1744	0,92	62
		48,95	29	1678	1,31	63
	63	56	26	1961	0,82	62
		61,88	23	2122	1,04	63
	80	81,29	18	2787	0,83	

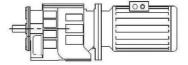
 I_n =Relación de velocidad nominal

 I_r =Relación de velocidad real

 $N_2 = Revoluciones$ de salida del reductor

 ${\rm M_2}{=}{\rm Par}$ de salida del reductor

Fs=Factor de servicio


.2=2 Trenes de engranajes

Serie -RD Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

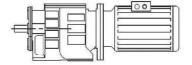
N, = 1400 Rpm

Kw	I _n	I _r	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
7,5	2,5	2,49	583	118	2,50	
	3,2	3,11	466	148	2,17	
	4	3,96	366	188	2,02	42
	5	4,83	300	229	1,74	232
	6,3	6,29	231	298	2,10	
	8	7,86	185	373	1,66	
		8,19	176	391	2,99	52
	10	10	145	474	1,30	42
	12.5	9,92	145	473	2,49	52
	12,5	12,20	119	579	1,10	42
		12,22	118	584	2,04	52
		12,44	116	594	3,53	62
	16	15,22	95	722	0,90	42
		15,45	93	738	1,63	52
	V	15,73	92	751	2,80	62
	20	20,30	71	969	1,26	52
		20,67	70	987	2,13	62
	25	25,99	55	1241	0,99	52
		24,62	59	1175	1,79	62
	31,5	31,43	46	1501	0,83	52
		33,20	43	1585	1,40	62
	40	40,50	36	1934	0,83	
		39,71	36	1857	1,18	
	50	48,95	29	2289	0,96	63
	63	61,88	23	2893	0,76	

I_n=Relación de velocidad nominal I_r=Relación de velocidad real N_2 =Revoluciones de salida del reductor $M_2 = Par$ de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes


Serie -RD

Series -MRD

REDUCTORES DE ENGRANAJES COAXIALES

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	I _n	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
9,2	2,5	2,49	587	144	2,05	
	3,15	3,11	469	180	1,78	42
	4	3,96	369	229	1,65	
		3,93	369	228	3,28	52
	5	4,83	302	279	1,43	42
		4,84	300	282	3,02	52
	6,3	6,29	232	363	1,70	42
		6,45	225	375	3,09	52
	8	7,86	186	454	1,36	42
	10	8,19	177	476	2,46	52
	10	10	146	578	1,07	42
		9,92	146	577	2,05	52
		10,10	144	587	3,58	62
	12,5	12,20	120	705	0,88	42
	41.50	12,22	119	711	1,67	52
		12,44	117	724	2,90	62
	16	15,45	94	899	1,34	52
		15,73	92	915	2,29	62
	20	20,30	71	1181	1,03	52
		20,67	70	1202	1,75	62
	25	25,99	56	1512	0,81	52
		24,62	59	1432	1,47	62
	31,5	33,20	44	1931	1,15	
	40	39,71	37	2262	0,97	63
	50	48,95	30	2788	0,79	

I_n=Relación de velocidad nominal

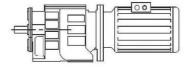
I_r=Relación de velocidad real

 ${\rm N_2} = {\rm Revoluciones}$ de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes



Serie -RD

Series -MRD

MRD

MRD....B

N₁ = 1400 Rpm

Kw	In	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
11	2,5	2,56	571	185	3,41	
	3,15	3,24	451	234	2,95	
	4	3,93	372	284	2,65	52
	5	4,84	302	350	2,43	
	6,3	6,45	226	466	2,49	
	8	8,19	178	591	1,98	
	10	8,33	175	602	3,32	62
	10	9,92	147	716	1,65	52
		10,10	145	729	2,88	62
	12,5	12,22	120	883	1,35	52
		12,44	117	899	2,34	62
	16	15,45	95	1116	1,08	52
	,	15,73	93	1136	1,85	62
	20	20,30	72	1466	0,83	52
		20,67	70	1492	1,41	
	25	24,62	59	1778	1,18	62
	31,5	33,20	44	2397	0,93	
	40	39,71	37	2808	0,78	63

 I_n =Relación de velocidad nominal

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

Serie -RD

Series -MRD

REDUCTORES DE ENGRANAJES COAXIALES

COAXIAL GEAR REDUCER

MRD

MRD....B

N₁ = 1400 Rpm

Kw	In	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
15	2,5	2,56	571	241	2,62	
	3,15	3,24	451	305	2,26	
	4	3,93	372	370	2,03	52
	5	4,84	302	456	1,86	
	6,3	6,45	226	608	1,91	
		6,57	222	619	3,23	62
	8	8,19	178	771	1,52	52
		8,33	175	785	2,55	62
	10	9,92	147	934	1,26	52
		10,10	145	951	2,21	62
	12,5	12,22	120	1151	1,03	52
		12,44	117	1172	1,79	62
	16	15,45	95	1455	0,82	52
-		15,73	93	1482	1,42	
	20	20,67	71	1947	1,08	62
	25	24,62	59	2319	0,91	
	31,5	33,20	44	3127	0,71	

I_n=Relación de velocidad nominal

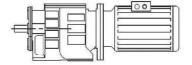
 I_r =Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 $\mathrm{M_2} ext{=}\mathrm{Par}$ de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes



Serie -RD

Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

$N_1 = 1400 \text{ Rpm}$

Kw	In	Ir	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
18,5	2,5	2,56	575	295	2,14	
	3,15	3,24	454	374	1,85	52
	4	3,93	374	453	1,66	
		4,02	366	464	3,45	62
	5	4,84	304	558	1,52	52
		4,96	297	572	3,15	62
	6,3	6,45	228	745	1,56	52
		6,57	224	758	2,64	62
	8	8,19	180	944	1,24	52
		8,33	176	961	2,06	62
	10	9,92	148	1144	1,03	52
		10,10	146	1165	1,80	62
	12,5	12,22	120	1410	0,84	52
		12,44	118	1436	1,46	
	16	15,73	93	1815	1,16	62
	20	20,67	71	2385	0,88	
	25	24,62	60	2840	0,74	

I_n=Relación de velocidad nominal

I_r=Relación de velocidad real

 N_2 =Revoluciones de salida del reductor

 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

Serie -RD

Series -MRD

COAXIAL GEAR REDUCER

MRD

MRD....B

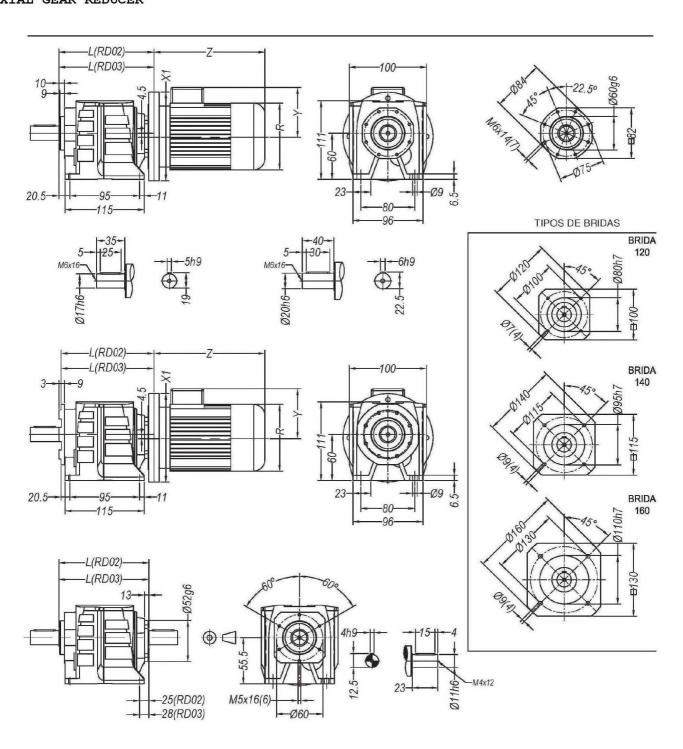
N₁ = 1400 Rpm

Kw	I _n	I	n ₂ Rpm	M ₂ (Nm)	Fs	Tipo
22	2,5	2,56	575	351	1,80	52
	3,15	3,24	454	445	1,55	
	Alexander (Control of Control of	3,32	443	455	3,08	62
	4	3,93	374	539	1,39	52
	5	4,02	366	551	2,90	62
	5	4,84	304	664	1,28	52
		4,96	297	680	2,65	62
	6,3	6,45	228	886	1,31	52
		6,57	224	902	2,22	
	8	8,33	176	1143	1,75	
	10	10,10	146	1385	1,52	62
	12,5	12,44	118	1707	1,23	
	16	15,73	93	2159	0,97	
	20	20,67	71	2836	0,74	

 I_n =Relación de velocidad nominal

 I_r =Relación de velocidad real

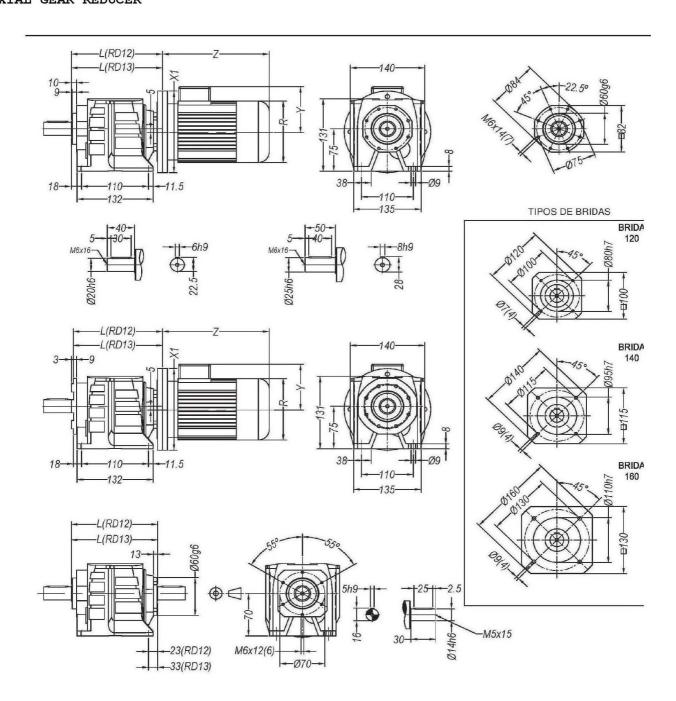
 N_2 =Revoluciones de salida del reductor


 M_2 =Par de salida del reductor

Fs=Factor de servicio

.2=2 Trenes de engranajes

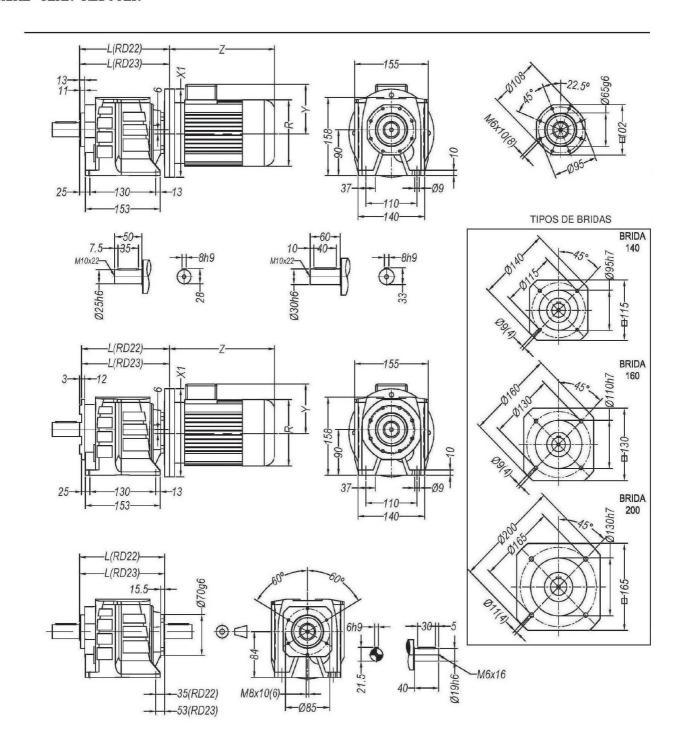
Serie -RD Series -MRD 02-03



RD MRD	02/03	02/03	02/03	02	 	
MOTOR TIPO	56	63	71	80	 	
R-Z-Y X1(B-5) X1(B-14)	109-172-91 120 80	123-183-92 140 90	138-215-102 160 105	159-240-120 120	 -	
L (RD-02) L (RD-03)	140 143	140 143	140 143	140	 	

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

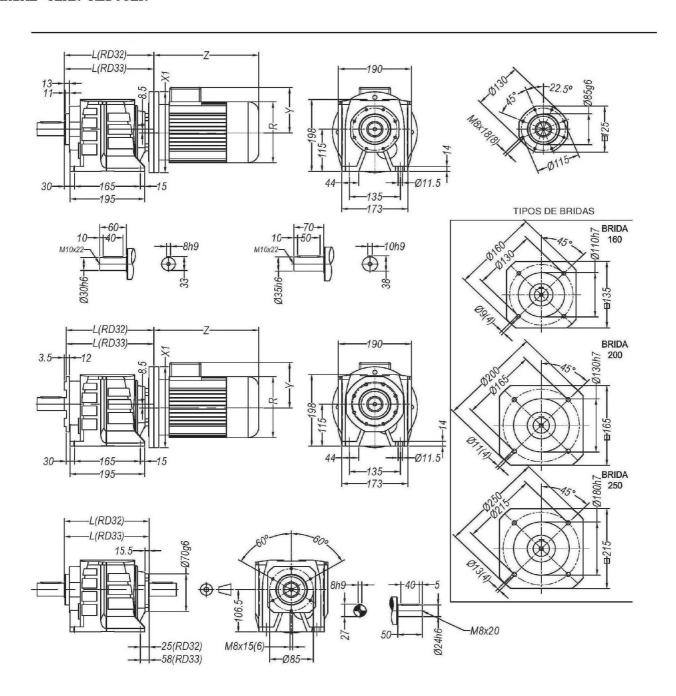
Serie -RD Series -MRD 12-13


RD MRD	12/13	12/13	12/13	12	12	12	
MOTOR TIPO	56	63	71	80	90 S	90 L	
R-Z-Y X1(B-5) X1(B-14)	109-172-91 120 	123-183-92 140 90	138-215-102 160 105	159-240-120 200 120	176-255-126 200 140	175-280-126 200 140	
L (RD-12) L (RD-13)	151 161	151 161	151 (B-14) 161 (B-14)	151 161	151 161	151 161	

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

Serie -RD

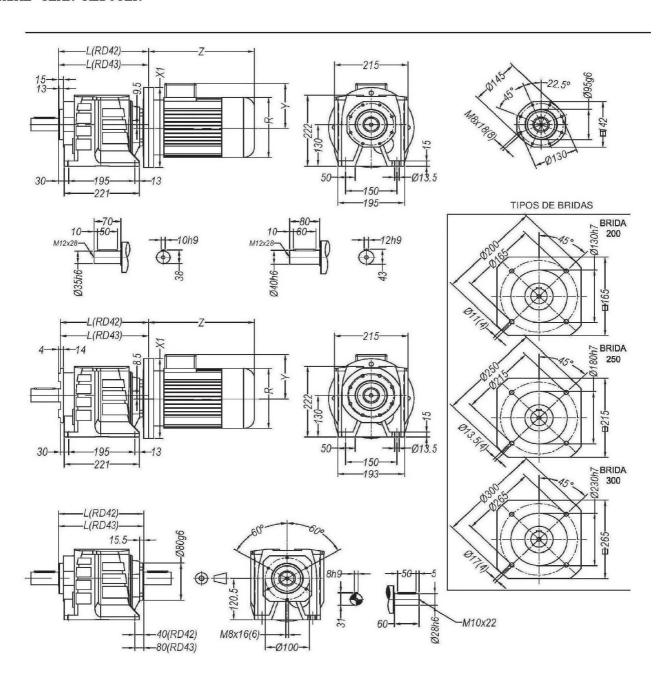
Series -MRD 22-23


RD MRD	22/23	22/23	22/23	22/23	22/23	22/23	22/23	
MOTOR TIPO	63	71	80	90 S	90 L	100	112	
R-Z-Y X1(B-5) X1(B-14)	123-185-92 140 	138-215-102 160 105	159-240-120 200 120	176-255-126 200 140	176-280-126 200 140	205-305-146 250 160	218-332-152 250 160	
L (RD-22) L (RD-23)	192 240	190 208	190 208	192 210	192 210	192	192	

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

Serie -RD

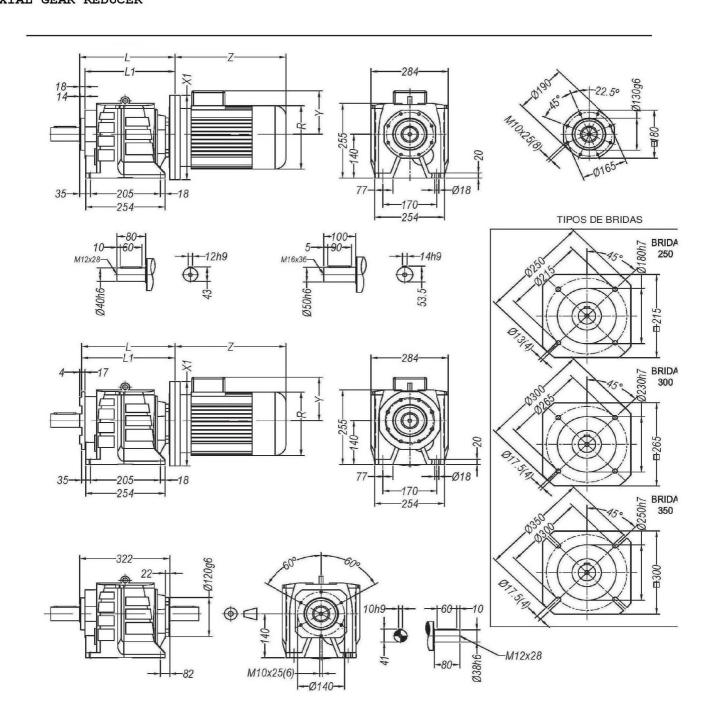
Series -MRD 32-33



RD MRD	32/33	32/33	32/33	32/33	32	32	
MOTOR TIPO	71	80	90 S	90 L	100	112	
R-Z-Y X1(B-5) X1(B-14)	138-215-102 160 105	159-240-120 200 120	176-255-126 200 140	176-280-126 200 140	205-305-146 250 160	218-332-152 250 160	
L (RD-32) L (RD-33)	220 253	220 255	220 255	220 255	228	228	

 $\textbf{R-Z-Y} \quad \text{Consultar pág.} \, 91 \, / \, \, \text{See pag.} \, 91 \, / \, \, \text{CF page 91}$

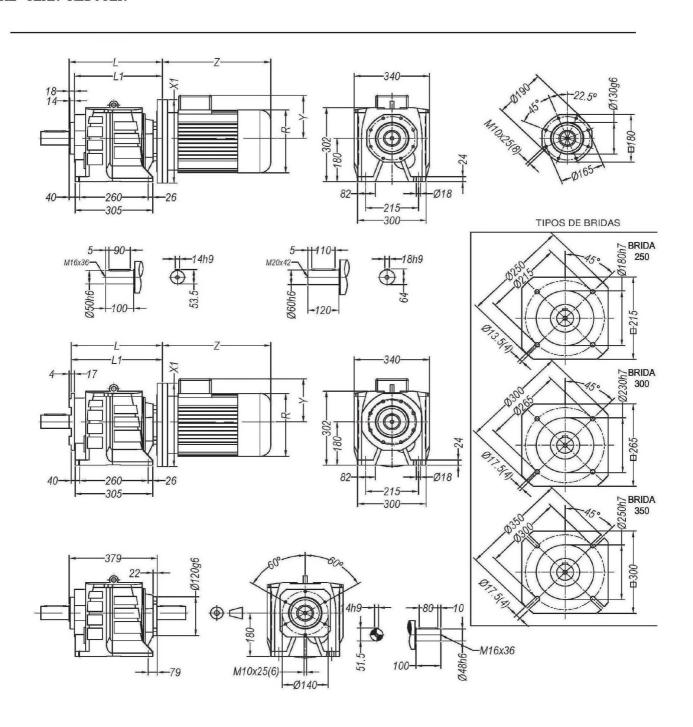
Serie -RD Series -MRD 42-43



RD MRD	43	42/43	42/43	42/43	42/43	42	42	42
MOTOR TIPO	71	80	90 S	90 L	100	112	132 S	132 M
R-Z-Y X1(B-5) X1(B-14)	138-215-102 160 	159-240-120 200 120	176-255-126 200 140	176-280-126 200 140	205-305-146 250 160	218-332-152 250 160	258-382-178 300 200	258-420-178 300 200
L (RD-42) L (RD-43)		265 305	265 305	265 305	265 306	266	268	268

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

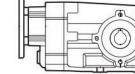
Serie -RD Series -MRD 52-53



RD MRD	52/53	<i>52/53</i>	52/53	52/53	52/53	52/53	<i>52</i>	<i>52</i>
MOTOR TIPO	80	90 S	90 L	100	112	132/ S-M	160	180
R-Z-Y	159-240-120	176-255-126	176-280-126	205-305-146	218-332-152	258-382(420M)-178	310-503-232	390-602-262
X1(B-5)	200	200	200	250	250	300	350	350
X1(B-14)						200		
L	322	322	322	322	322	322	353	353
L1	322/336	322/336	322/336	322/336	322/336	322/336	367	367

R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

Serie -RD Series -MRD 62-63



RD MRD	62/63	62/63	62/63	62/63	62/63	62/63	62	62
MOTOR TIPO	80	90 S	90 L	100	112	132/ S-M	160	180
R-Z-Y	159-240-120	176-255-126	176-280-126	205-305-146	218-332-152	258-382(420M)-178	310-503-232	390-602-262
X1(B-5)	200	200	200	250	250	300	350	350
X1(B-14)						200		
L	379	379	379	379	379	379	410	410
L1	379/393	379/393	379/393	379/393	379/393	379/393	424	424

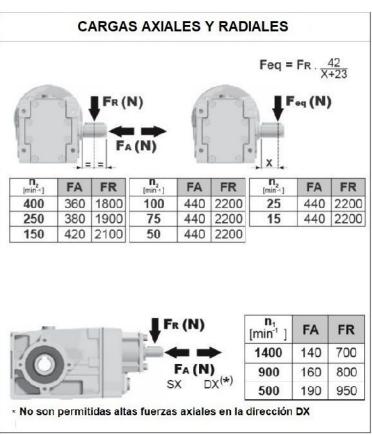
R-Z-Y Consultar pág. 91 / See pag. 91 / CF page 91

Serie

X22S

HELICAL BEVEL REDUCERS

Series


ELOCIDAD DE SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL		IBLE B5 MOTOR		PONIBLE B	30330	EJE HUECO DE SALIDA
n		P _{IM}	M_{2M}	SERVICIO	P _{1R}	M _{2R}	63	71	56	63	71	
n ₂ [min ⁻¹]	i	[kW]	[Nm]	f.s.	[kW]	[Nm]	140	160	80	90	105	0
290	4.83	0.37	12	2.6	0.95	30			С	С	100	
189	7.40	0.37	18	1.7	0.62	30			С	С		
146	9.58	0.37	23	1.7	0.64	40			С	С		
128	10.98	0.37	27	1.7	0.63	45			С	С		
107	13.07	0.37	32	1.4	0.53	45			С	С		
95	14.66	0.37	35	1.3	0.47	45			С	С		ø20
89	15.79	0.37	38	1.2	0.44	45			С	С		ESTÁNDAR
83	16.81	0.37	41	1.1	0.41	45			С	С		
70	20.00	0.37	48	1.0	0.37	48			С	С		ø18
64	21.93	0.37	53	0.9	0.35	50			С	С		BAJO
58	24.18	0.25	39	1.3	0.32	50			С	С		DEMANDA
48.2	29.04	0.25	47	1.1	0.26	50			С	С		
41.7	33.57	0.18	42	1.2	0.23	50			С	С		
36.2	38.67	0.18	48	1.0	0.20	50			С	С		
31.5	44.44	0.18	55	0.9	0.17	50			С	С		
23.7	59.18	0.12	48	1.0	0.13	50			С	С		
19.9	70.24	0.09	45	1.1	0.11	50			C	С		

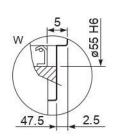
CANTIDAD ESTÁNDAR	CANTIL	CANTIDAD ACEITE SEGÚN POSICIÓN DE FUNCIONAMIENTO									
B 3	E 6	B 7	B8	H	V5	V6 -	V8				
0.25 LT	0.25 LT	0.25 LT	0.2	5 LT	0.43 LT	0.31 LT	PREGUNTAR				
AG	IP Telium '	/SF 320		SHELL Omala S4 WE 320							
							tab.				

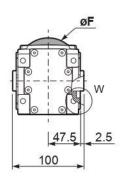
El reductor tamaño X22S se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

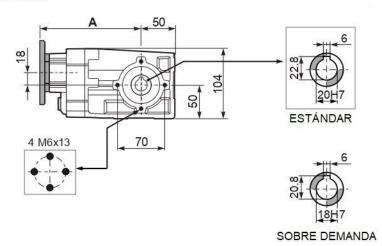
Ver tabla 1 para cantidades y aceites recomendados

Feq: Su cálculo indica la fuerza radial máxima soportable por el eje dependiendo de su punto de aplicación

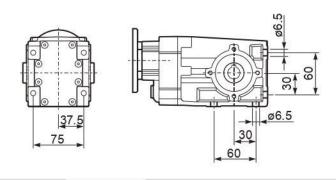
Serie

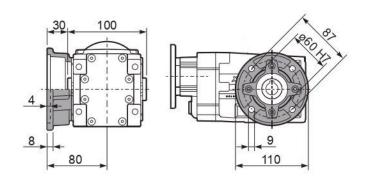

X22S

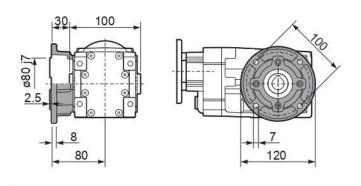

PESO 3.70 kg

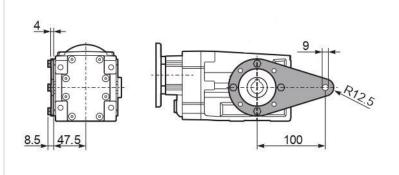

HELICAL BEVEL REDUCERS

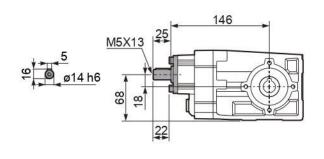
	-X
Series	

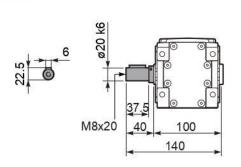

	øF	Α
63B5	138	154.5
71B5	160	152
56B14	80	152
63B14	90	154.5
71B14	105	152



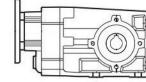

PX22S..-N.. PATAS


PX22S-FO.. BRIDA DE SALIDA


PX22S-F1.. BRIDA DE SALIDA


PX22S**BR**.. BRAZO DE REACCIÓN

RX22S... EJE ENTRADA MACHO



PX22S..A.. EJE SALIDA SIMPLE

Serie

X32S

HELICAL BEVEL REDUCERS

~					
6	0	r	٦.	0	-
		-	-	=	-

ABLA DI VELOCIDAD DE SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			IBLE B5		II COST	SPONIBLE E RIDAS MOT	3933	EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M_{2M}	SERVICIO	P _{IR}	M _{2R}	-B	-C	-D	-E	-Q	-R	-T	
[min ⁻¹]	'	[kW]	[Nm]	f.s.	[kŴ]	[Nm]	63	71	80	90	71	80	90	Ø
191	7.33	1.5	72	1.0	1.5	70	В				С	С		
125	11.22	1.1	80	1.1	1.2	85	В				С	С		
106	13.26	1.1	95	0.9	0.98	85	В				С	С		
91	15.37	1.1	110	0.8	0.89	90	В				С	С		
78	18.04	0.75	89	1.0	0.76	90	В				С	С		
69	20.30	0.75	100	0.9	0.68	90	В				С	С		ø20
65	21.54	0.75	106	0.9	0.64	90	В				С	С		ESTÁNDAR
59	23.53	0.55	85	1.1	0.58	90	В				С	С		
51	27.62	0.55	100	0.9	0.50	90	В				C	С		ø25
47.6	29.40	0.55	106	0.8	0.47	90	В				С	С		BAJO
42.5	32.97	0.37	80	1.1	0.42	90	В				C	C		DEMANDA
36.5	38.37	0.37	93	1.0	0.36	90	В				С	С		
31.1	45.00	0.25	73	1.2	0.31	90	В				C	С		
27.6	50.67	0.25	83	1.1	0.27	90	В				Č	C		
23.8	58.73	0.18	73	1.2	0.23	90	В				C	C		
18.1	77.55	0.18	97	0.9	0.18	90	В				C	C		

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO PARA ADAPTAR

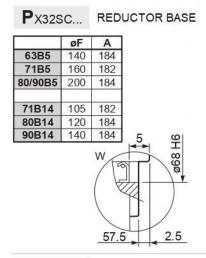
B) NO ES NECESARIO CASQUILLO

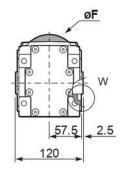
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

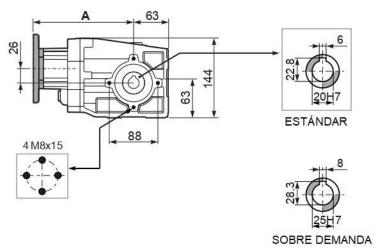
El reductor tamaño X32S se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

Ver tabla 1 para cantidades y aceites recomendados

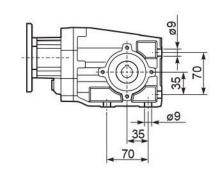
CANTIDAD ESTÁNDAR	CANTIL	CANTIDAD ACEITE SEGÚN POSICIÓN DE FUNCIONAMIENTO								
B 3	E 6	B 7	B8	V5	V6 -	V8				
0.40 LT	0.60 LT	0.40 LT	0.60 LT	0.85 LT	0.60 LT	PREGUNTAR				
AG	IP Telium \	VSF 320		SHELL Or	nala S4 Wi	320				

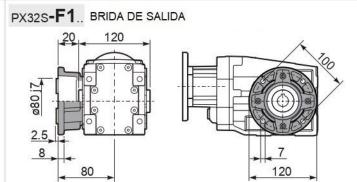

Serie


X32S

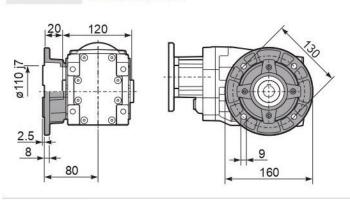

PESO 6.30 kg

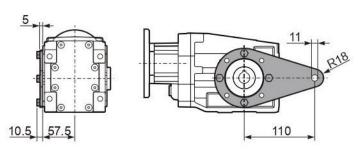
HELICAL BEVEL REDUCERS



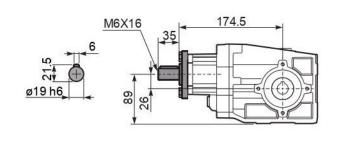


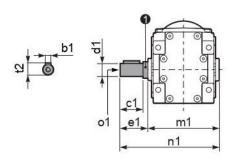
PX32S..-**N**.. PATAS




PX32S-F2.. BRIDA DE SALIDA

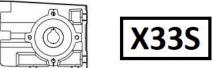
45


90



RX32S... EJE ENTRADA MACHO

PX32S..A.. EJE SALIDA SIMPLE



		0		m1			01
ø20 ^{-0.005}	6	37.5	40	120	140	22.5	M8x20
ø25 ^{-0.005}	8	60	63.2	126.8	190	28	M8x20

Serie

HELICAL BEVEL REDUCERS

~	200	905-25	-	5020	RAN
S	_	70	-		0
		_	_	=	-

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE SERVICIO	POTENCIA NOMINAL	PAR NOMINAL	DISPONIE BRIDAS I	(A)		PONIBLE E	0.000.00	DE SALIDA
n,	i	P _{1M}	M_{2M}		P _{1R}	M _{2R}	-B	-C	-0	-P	-Q	(
[min ⁻¹]		[kW]	[Nm]	f.s.	[kŴ]	[Nm]	63	71	56	63	71	Ø
38.7	36.17	0.37	86	1.2	0.43	100			С	С		-
31.7	44.21	0.37	105	1.0	0.35	100			С	С		
27.6	50.68	0.25	81	1.2	0.31	100			С	С		
25.3	55.36	0.25	89	1.1	0.28	100			С	С		
23.2	60.31	0.25	96	1.0	0.26	100			С	С		
21.2	65.88	0.25	105	0.9	0.24	100			С	С		
19.4	72.25	0.18	88	1.1	0.22	100			С	С		
17.6	79.64	0.18	97	1.0	0.20	100			С	С		ø20
15.2	92.31	0.18	113	0.9	0.17	100			С	С		ESTÁNDAR
14.6	95.65	0.18	117	0.9	0.16	100			С	С		
13.8	101.23	0.12	80	1.2	0.15	100			С	C		ø25
11.0	127.37	0.12	101	1.0	0.12	100			С	С		BAJO
9.3	151.16	0.09	95	1.0	0.10	100			С	С		DEMANDA
7.8	178.46	0.09	113	0.9	0.09	100			С	С		
6.6	211.79	0.06	88	1.1	0.07	100			С	С		
6.1	231.37	0.06	96	1.0	0.07	100			С	С		
5.1	273.16	0.06	113	0.9	0.06	100			С	С		
4.3	324.18	0.06	134	0.7	0.05	100			С	С		

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO

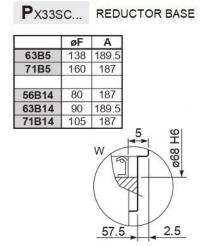
B) NO ES NECESARIO CASQUILLO

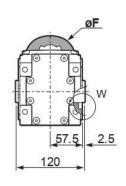
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

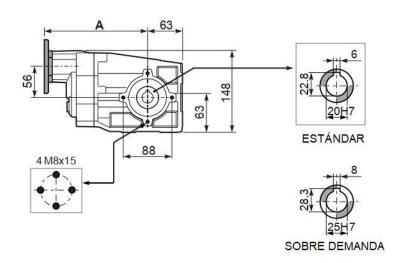
El reductor tamaño X33S se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

Ver tabla 1 para cantidades y aceites recomendados

CANTIDAD ESTÁNDAR	CANTI	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAM	IENTO
B 3	E 6	B7	B8	V5	V6 —	V8
0.70 LT	0.65 LT	0.40 LT	0.65 LT	0.95 LT	0.65 LT	PREGUNTAR
AG	IP Telium \	/SF 320		SHELL O	mala S4 WE	320

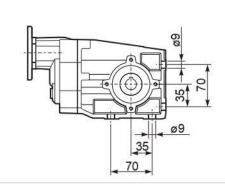

Serie

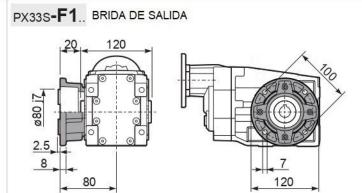

X33S

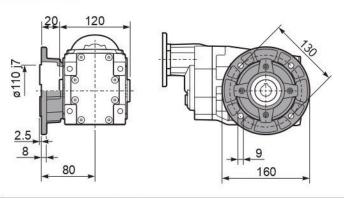

PESO 6.55 kg

HELICAL BEVEL REDUCERS

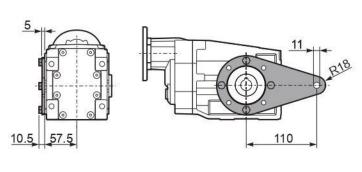
-X Series

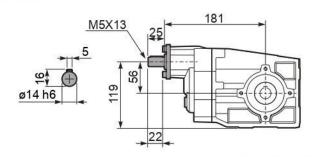


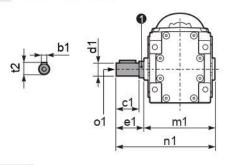



45

PX33S-N. PATAS

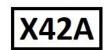



PX33S-F2.. BRIDA DE SALIDA


PX33S**BR**... BRAZO DE REACCIÓN

RX33S... EJE ENTRADA MACHO

PX33S..A.. EJE SALIDA SIMPLE



d1	b1	с1	e1	m1	n1	t2	01
ø20 ^{-0.005}	6	37.5	40	120	140	22.5	M8x20
ø25 ^{-0.005}	8	60	63.2	126.8	190	28	M8x20

Serie

HELICAL BEVEL REDUCERS

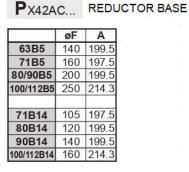
Series

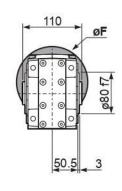
ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			PONIBL DAS MO			V	ISPONIBI BRIDAS I			EJE HUECO DE SALIDA
n ₂	:	P _{IM}	M_{2M}	SERVICIO	Р	M _{2R}	-B	-C	-D	-E	-F	-Q	-R	-T	-U	
[min ⁻¹]	1	[kW]	[Nm]	f.s.	P _{1R} [kW]	[Nm]	63	71	80	90	100 112	71	80	90	100 112	Ø,
192	7.29	2.2	104	0.9	2.0	95	В					С	С			
125	11.20	2.2	159	0.9	2.0	150						С	С			
106	13.18	1.5	129	1.2	1.7	150	ВВ					С	С			
92	15.27	1.1	109	1.4	1.5	150	В					С	С			
78	17.93	1.1	128	1.2	1.3	150	В					С	С			
69	20.25	1.1	145	1.0	1.1	150	ВВ					С	С			
65	21.40	1.1	153	1.0	1.1	150	В					С	С			ø25
60	23.47	0.75	115	1.3	0.98	150	В					С	С			ESTÁNDAR
51	27.55	0.75	135	1.1	0.83	150	В					С	С			
47.9	29.21	0.75	143	1.0	0.78	150	В					С	С			ø30
42.6	32.88	0.75	161	0.9	0.70	150	В					С	С			BAJO
36.7	38.12	0.55	138	1.1	0.60	150	В					С	С			DEMANDA
31.2	44.89	0.55	163	0.9	0.51	150	В					С	С			
27.8	50.34	0.37	122	1.1	0.40	131	В					С	С			
23.9	58.58	0.37	142	1.1	0.39	150	В					С	С			
18.1	77.36	0.25	126	1.2	0.30	150	В					С	С			

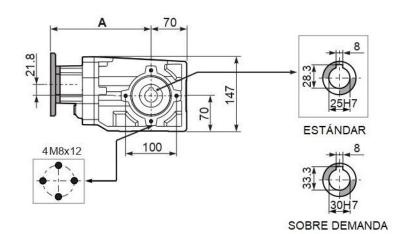
El reductor tamaño X42A se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

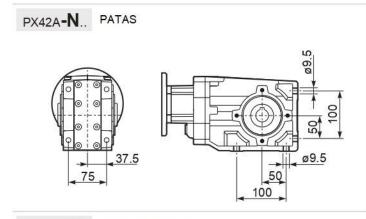
Ver tabla 1 para cantidades y aceites recomendados

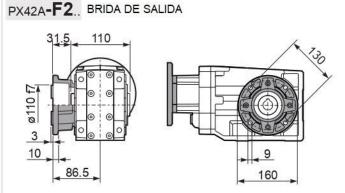
CANTIDAD ESTÁNDAR	CANTIE	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAM	IIENTO
B 3	E 6	B7	B8	V5	V6	V8
0.60 LT	0.75 LT	0.50 LT	0.70 LT	1.10 LT	0.60 LT	PREGUNTAR
AG	IP Telium \	/SF 320		SHELL Or	nala S4 WE	E 320

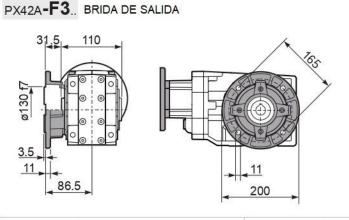

Serie

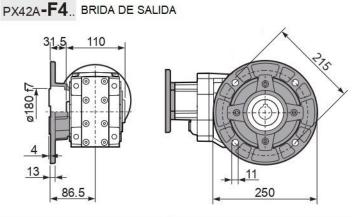


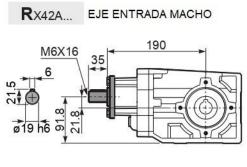

PESO 7.82 kg

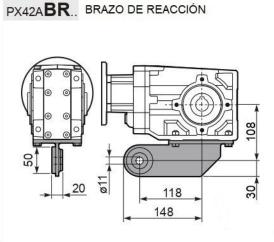

HELICAL BEVEL REDUCERS

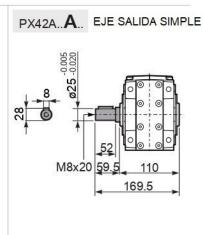


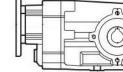














Serie

HELICAL BEVEL REDUCERS

Series

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL	DISPON BRIDAS	BLE B5 MOTOR		PONIBLE B		EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M _{2M}	SERVICIO	P _{1R}	M _{2R}	-B	-C	-0	-P	-Q	
[min ⁻¹]		[kW]	[Nm]	f.s.	[kW]	[Nm]	63	71	56	63	71	Ø
27.8	50.35	0.37	119	1.3	0.46	150			С	С		
25.4	55.22	0.37	131	1.1	0.42	150			С	С		
23.4	59.92	0.37	142	1.1	0.39	150			С	С		
21.3	65.72	0.37	156	1.0	0.36	150			С	С		
19.5	71.78	0.25	115	1.3	0.33	150			С	С		
17.6	79.44	0.25	127	1.2	0.29	150			С	С		
15.2	92.08	0.25	147	1.0	0.25	150			С	С		ø25
14.7	95.03	0.25	152	1.0	0.25	150			С	С		ESTÁNDAR
11.1	126.55	0.18	155	1.0	0.20	160			С	С		
10.5	133.15	0.18	163	1.0	0.19	160			С	С		ø30
9.3	150.18	0.12	119	1.3	0.17	160			С	С		BAJO
7.9	177.30	0.12	140	1.1	0.14	160			С	С		DEMANDA
6.7	210.42	0.09	133	1.2	0.12	160			С	С		
6.1	230.79	0.09	146	1.1	0.11	160			С	С		
5.1	272.47	0.06	113	1.4	0.09	160			С	С		
4.3	323.37	0.06	134	1.2	0.08	160			С	С		

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO PARA ADAPTAR

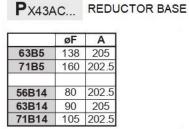
B) NO ES NECESARIO CASQUILLO

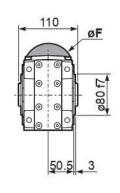
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

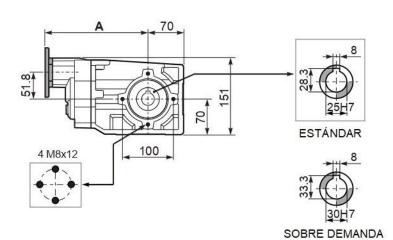
El reductor tamaño X43A se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

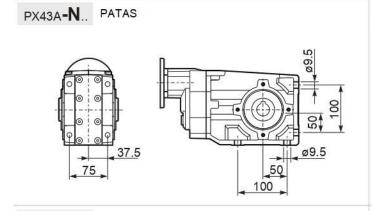
Ver tabla 1 para cantidades y aceites recomendados

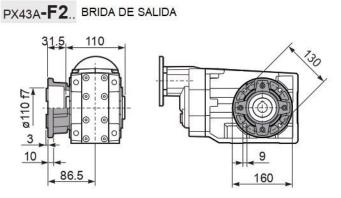
CANTIDAD ESTÁNDAR	CANTI	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAM	IENTO
H 3	((a)	B 7	B8	V5	V6 -	V8
0.80 LT	0.80 LT	0.60 LT	0.80 LT	1.20 LT	0.70 LT	PREGUNTAR
AG	IP Telium '	VSF 320		SHELL Or	nala S4 WE	320

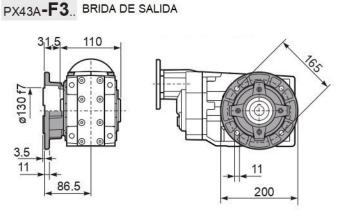

Serie

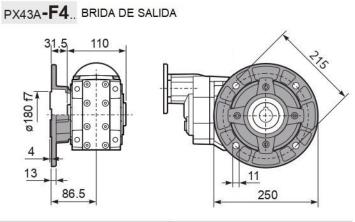

X43A

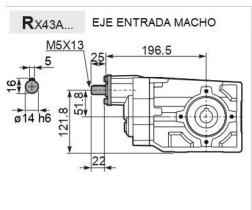

PESO 7.93 kg

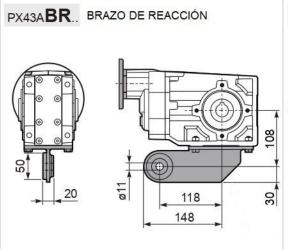

HELICAL BEVEL REDUCERS

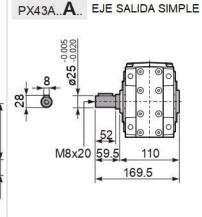


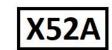












Serie

HELICAL BEVEL REDUCERS

Series

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL		DISPONI			7,037.23	ONIBLE I	5550000	EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M _{2M}	SERVICIO	P _{1R}	M _{2R}	-C	-D	-E	-F	-R	-T	-U	
[min ⁻¹]	1	[kW]	[Nm]	f.s.	[kW]	[Nm]	71	80	90	100 112	80	90	100 112	0
232	6.03	3	116	1.2	3.4	135	В				0.0			
151	9.26	3	179	0.9	2.6	155	В							
123	11.36	3	219	1.0	3.1	230	В							
91	15.36	2.2	218	1.1	2.5	250	В							
80	17.46	2.2	248	1.0	2.2	250	В							
70	19.97	2.2	284	0.9	1.9	250	В							ø30
59	23.60	1.5	231	1.1	1.6	250	В							ESTÁNDAR
57	24.45	1.5	239	1.0	1.6	250	В							
45.6	30.69	1.1	220	1.1	1.2	250	В							ø35
39.6	35.35	1.1	253	1.0	1.1	250	В							BAJO
37.3	37.57	1.1	269	0.9	1.0	250	В							DEMANDA
28.8	48.68	0.75	239	1.0	0.78	250	В							
25.8	54.33	0.75	267	0.9	0.70	250	В							
18.7	74.81	0.37	181	1.2	0.43	210	В							

BRIDAS DISPONIBLES

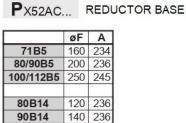
B) LLEVAN CASQUILLO PARA ADAPTAR

B) NO ES NECESARIO CASQUILLO

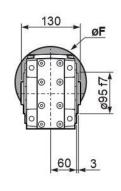
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

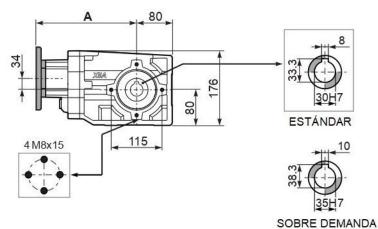
El reductor tamaño X52A se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

Ver tabla 1 para cantidades y aceites recomendados

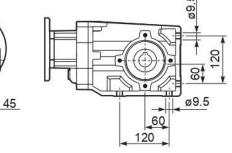

Serie

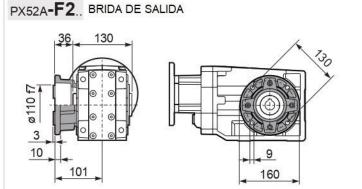
X52A

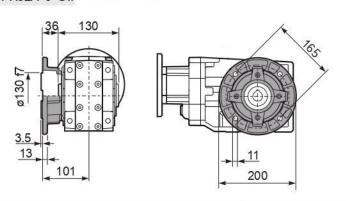

PESO 12.80 kg

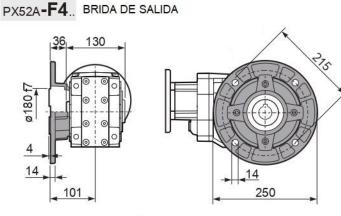

HELICAL BEVEL REDUCERS

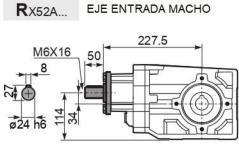
Series

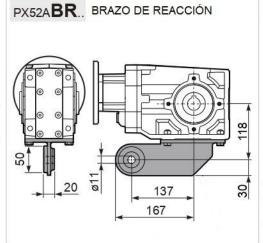

100/112B14 160

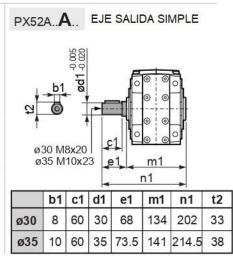


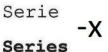


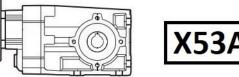





PX52A-F3.. BRIDA DE SALIDA


90





Serie

HELICAL BEVEL REDUCERS

ABLA DE	E SELEC	CCIÓN POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			IBLE B5 MOTOR			ONIBLE [N1=1400 EJE HUECO DE SALIDA
n ₂	i	P _{IM}	M_{2M}	SERVICIO	P _{1R}	M _{2R}	-B	-C	-D	-E	-Q	-R	-T	
[min ⁻¹]		[kW]	[Nm]	f.s.	[kW]	[Nm]	63	71	80	90	71	80	90	0
24.7	56.76	0.55	201	1.2	0.69	250	В				С	С		
21.3	65.79	0.55	233	1.1	0.59	250	В				С	С		
18.1	77.23	0.55	274	0.9	0.50	250	В				С	С		
16.0	87.23	0.37	207	1.2	0.45	250	В				С	С		
15.2	92.18	0.37	219	1.1	0.42	250	В				С	С		
13.9	100.47	0.37	238	1.0	0.39	250	В				С	С		
12.0	116.45	0.37	276	0.9	0.33	250	В				С	С		
11.1	125.82	0.25	201	1.2	0.31	250	В				С	С		ø30
9.9	141.66	0.25	227	1.1	0.28	250	В				С	С		ESTÁNDAR
8.6	163.16	0.25	261	1.0	0.24	250	В				С	С		
7.8	178.96	0.18	219	1.1	0.22	250	В				C	С		ø35
7.2	193.36	0.18	237	1.1	0.20	250	В				C	C		BAJO
6.5	216.84	0.18	265	0.9	0.18	250	В				С	С		DEMANDA
5.5	252.36	0.12	200	1.3	0.15	250	В				C	C		
4.8	290.67	0.12	230	1.1	0.13	250	В				C	C		
4.2	333.23	0.12	263	0.9	0.12	250	В				C	C		
3.6	383.82 446.70	0.12	303	0.8	0.10	250	В				C	C		
3.1	589.85	0.12* 0.12*	353 466	0.7	0.09	250 250	B B				C	C		

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO PARA ADAPTAR

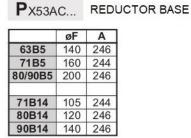
B) NO ES NECESARIO CASQUILLO

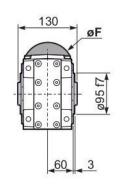
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

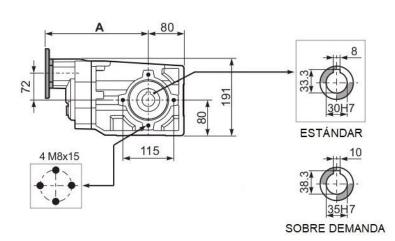
El reductor tamaño X53A se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

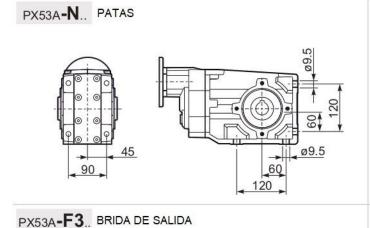
Ver tabla 1 para cantidades y aceites recomendados

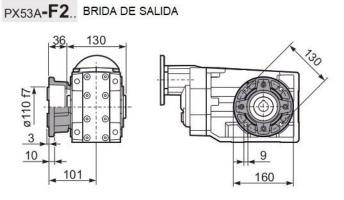
CANTIDAD ESTÁNDAR	CANTIL	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAM	IIENTO
H 3	1 B6	B7	B8	V5	V6	V8
1.30 LT	1.55 LT	0.85 LT	1.45 LT	2.10 LT	1.25 LT	PREGUNTAR
AG	IP Telium \	/SF 320		SHELL Or	nala S4 WE	320

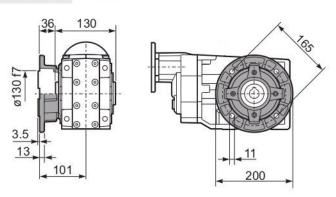

Serie -X

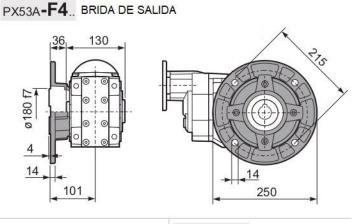

X53A

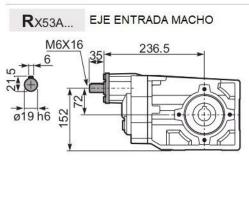

PESO 12.65 kg

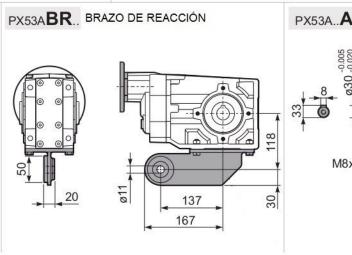

HELICAL BEVEL REDUCERS

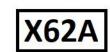












Serie

HELICAL BEVEL REDUCERS

Series

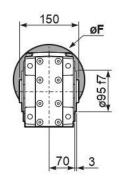
ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			PONIBL DAS M					BLE B14 MOTOR	1	EJE HUECO DE SALIDA
n		P _{1M}	M_{2M}	SERVICIO	P _{1R}	M _{2R}	-C	-D	-E	-F	-G	-R	-T	-U	-V	
n ₂ [min ⁻¹]	i	[kW]	[Nm]	f.s.	[kW]	[Nm]	71	80	90	100 112	132	80	90	100 112	132	Ø
232	6.03	5.5	211	1.1	6.1	240	В									
151	9.26	4	238	1.1	4.5	270	В									
123	11.36	4	291	1.2	4.7	350	В									
91	15.36	4	394	1.0	3.8	385	В									
80	17.46	4	448	0.9	3.5	400	В									
70	19.97	3	386	1.1	3.1	410	В									ø35
59	23.60	3	456	0.9	2.7	410	ВВ									ESTÁNDAR
57	24.45	3	472	0.9	2.6	410	В									
45.6	30.69	2.2	436	0.9	2.0	410	В									ø40
39.6	35.35	1.5	346	1.2	1.8	410	В									BAJO
37.3	37.57	1.5	368	1.1	1.7	410	В									DEMANDA
28.8	48.68	1.1	348	1.0	1.1	365	В									
25.8	54.33	1.1	389	1.1	1.2	410	В									
18.7	74.81	0.75	367	1.0	0.73	360	В									

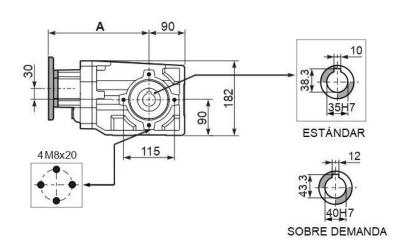
El reductor tamaño X62A se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

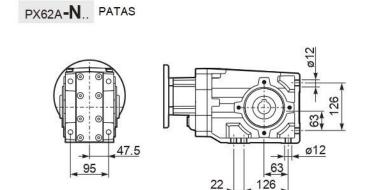
Ver tabla 1 para cantidades y aceites recomendados

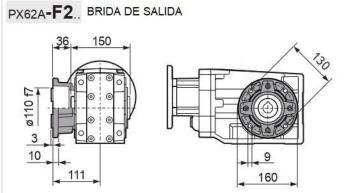
Serie

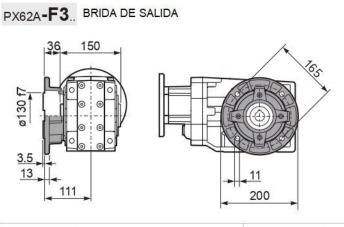
X62A

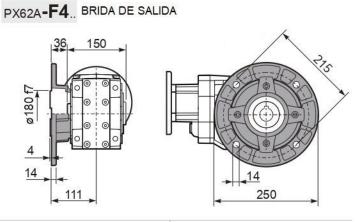

PESO REDUCTOR 15.80 kg

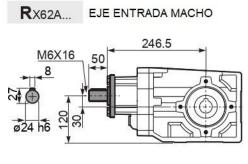

HELICAL BEVEL REDUCERS

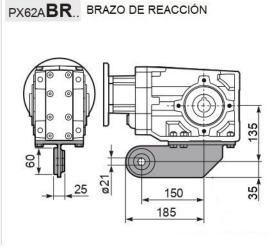

Series

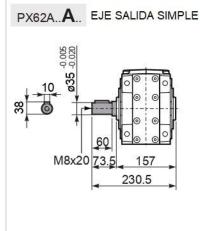


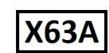

	øF	Α
71B5	160	253
80/90B5	200	255
100/112B5	250	264
132B5	300	282
80B14	120	255
90B14	140	255
100/112B14	160	264
132B14	200	282











Serie

HELICAL BEVEL REDUCERS

Series

VELOCIDAD DE SALIDA	E SELEC	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL		- 1000	NIBLE BE			PONIBLE E		N1=1400 R EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M _{2M}	SERVICIO	P _{IR}	M_{2R}	-B	-C	-D	-E	-Q	-R	-T	
[min ⁻¹]		[kW]	[Nm]	f.s.	[kŴ]	[Nm]		63 71 8	80	90	71	80	90	Ø
24.7	56.76	1.1	398	1.0	1.1	410	В				С	С		
21.3	65.79	0.75	316	1.3	0.97	410	В				С	С		
18.1	77.23	0.75	371	1.1	0.83	410	В				С	С		
16.0	87.23	0.75	420	1.0	0.73	410	В				С	С		
15.2	92.18	0.75	443	0.9	0.69	410	В				С	С		
13.9	100.47	0.55	357	1.2	0.64	410	В				С	С		
12.0	116.45	0.55	413	1.0	0.55	410	В				С	С		ø35
11.1	125.82	0.55	446	0.9	0.51	410	В				С	С		
9.9	141.66	0.37	336	1.2	0.45	410	В				С	С		ESTÁNDAR
8.6	163.16	0.37	387	1.1	0.39	410	В				С	С		ø40
7.8	178.96	0.37	424	1.0	0.36	410	В				С	С		BAJO
7.2	193.36	0.37	459	0.9	0.33	410	В				С	С		DEMANDA
6.5	216.84	0.25	347	1.2	0.29	410	В				С	С		DEMANDA
5.5	252.36	0.25	404	1.0	0.25	410	В				С	С		
4.8	290.67	0.25	465	0.9	0.22	410	В				С	С		
4.2	333.23	0.18	408	1.0	0.19	410	В				С	С		
3.6	383.82	0.18	470	0.9	0.17	410	В				С	С		
3.1	446.70	0.12	353	1.2	0.14	410	В				С	С		
2.4	589.85	0.12	466	0.9	0.11	410	В				С	С		

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO PARA ADAPTAR

B) NO ES NECESARIO CASQUILLO

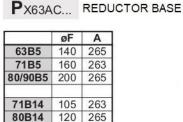
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño X63A se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

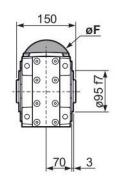
Ver tabla 1 para cantidades y aceites recomendados

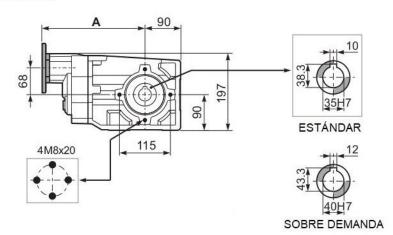
CANTIDAD ESTÁNDAR	CANTIE	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAM	IENTO	
B3	E 6	B 7	B8	V5	V6 -	V8	
1.80 LT	1.80 LT	1.05 LT	1.70 LT	2.60 LT	1.65 LT	PREGUNTAR	
AG	IP Telium \	/SF 320		SHELL Or	nala S4 WE	320	

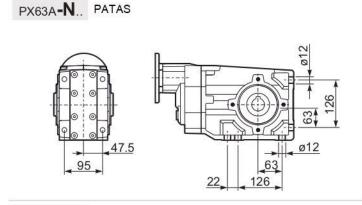
Serie

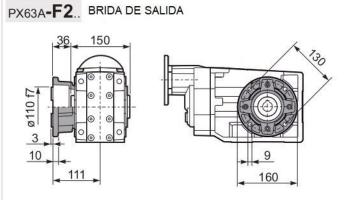

X63A

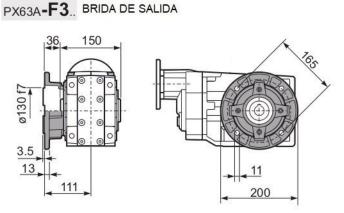
PESO 15.98 kg

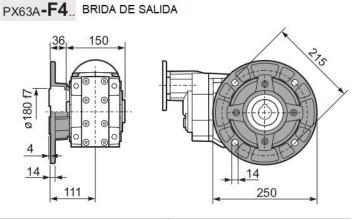

HELICAL BEVEL REDUCERS

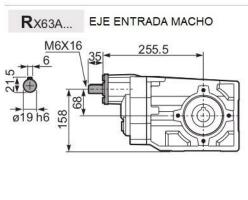

265

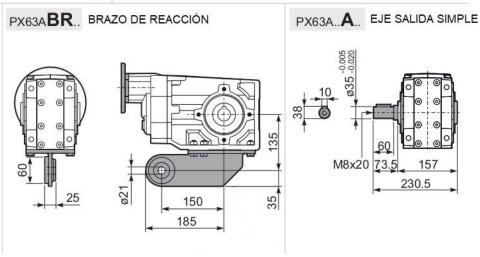


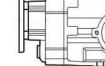



90B14 140









Serie

X73C

HELICAL BEVEL REDUCERS

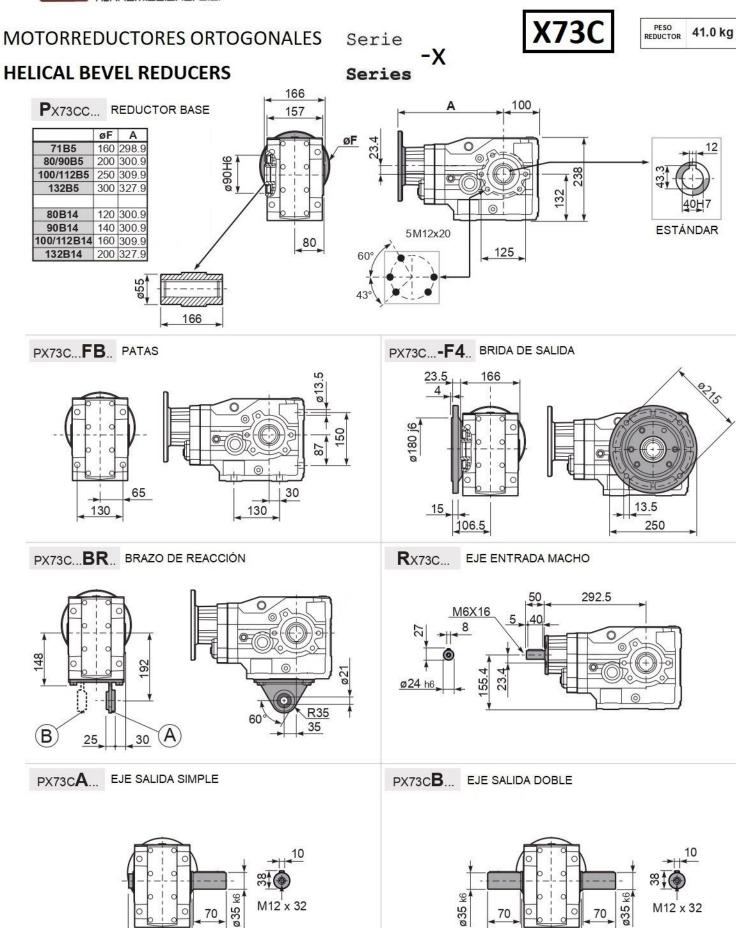
Series

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL	DISPONIBLE B5 DISPONIBLE B14 BRIDAS MOTOR BRIDAS MOTOR									EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M _{2M}	SERVICIO	P _{1R}	M_{2R}	-C	-D	-E	-F	-G	-R	-T	-U	-V	
[min ⁻¹]	'	[kW]	[Nm]	f.s.	[kW]	[Nm]	71	80	90	100 . 112	132	80	90	100 112	132	Ø
176	7.94	7.5	369	1.0	7.5	380	В								mi	
153	9.13	7.5	425	0.9	6.7	390	В									
131	10.66	5.5	366	1.1	6.0	410	В									
94	14.97	5.5	514	1.1	6.0	580	В									
81	17.21	5.5	591	1.0	5.4	600	В									
69	20.24	5.5	695	1.0	5.2	675	В									
60	23.27	4	585	1.2	4.5	675	В								100	
53	26.31	4	661	1.0	4.0	675	В									
46.3	30.25	4	760	0.9	3.5	675	В									ø40
39.6	35.32	3	668	1.0	3.0	675	В									ESTÁNDAR
37.8	37.03	3	701	1.0	2.8	675	В									
32.4	43.23	2.2	602	1.1	2.4	675	В									
30.1	46.58	2.2	649	1.0	2.3	675	В									
26.1	53.55	2.2	746	0.9	2.0	675	В									
22.4	62.52	1.5	600	1.1	1.7	675	В									
19.0	73.75	1.1	517	1.1	1.2	580	В									
16.3	86.09	1.1	604	1.1	1.2	675	В			8		3				

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO PARA ADAPTAR

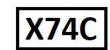
B) NO ES NECESARIO CASQUILLO


C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño X73C se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

Ver tabla 1 para cantidades y aceites recomendados

CANTIDAD ESTÁNDAR	CANTIDAD ACEITE SEGÚN POSICIÓN DE FUNCIONAMIENTO											
B 3	E 6	B 7	B8	V5	v6 -	V8						
2.45 LT	2.55 LT	1.80 LT	1.95 LT	4.05 LT	2.55 LT	PREGUNTAR						
AG	IP Telium \	/SF 320		SHELL On	nala S4 WE	320						



Serie

HELICAL BEVEL REDUCERS

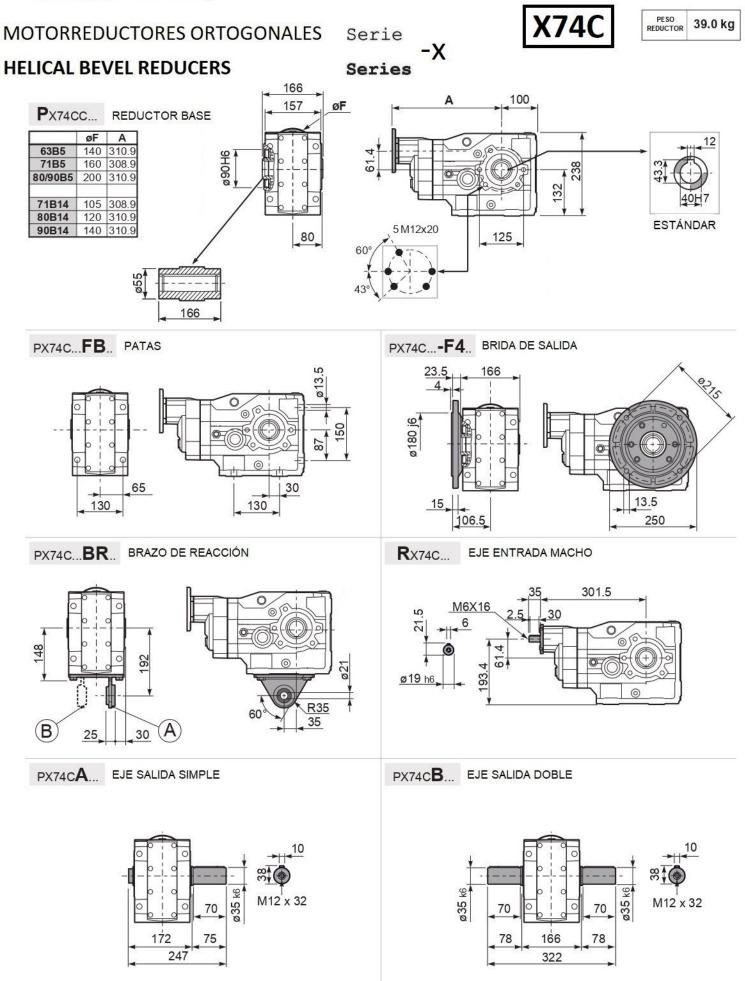
Series

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			BLE B5 MOTOR	1	1000	PONIBLE B	(3)(3)	EJE HUECO DE SALIDA
n,	i	P _{IM}	M_{2M}	f.s.	P _{1R}	M_{2R}	-B	-C	-D	-E	-Q	-R	-T	
[min ⁻¹]		[kW]	[Nm]	1.5.	[kW]	[Nm]	63	71	80	90	71	80	90	Ø
18.7	74.79	1.5	704	1.0	1.4	675	В				С	С		10
16.3	85.99	1.1	591	1.1	1.3	675	В				С	С		
14.0	99.66	1.1	685	1.0	1.1	675	В				С	С		
12.0	116.35	0.75	548	1.2	0.92	675	В				CC	С		
11.5	121.45	0.75	572	1.2	0.89	675	В				С	С		
10.0	139.64	0.75	658	1.0	0.77	675	В				С	С		
9.2	152.21	0.75	717	0.9	0.71	675	В				0000	С		
8.6	163.02	0.55	567	1.2	0.66	675	В				С	С		
7.9	177.69	0.55	618	1.1	0.61	675	В				С	С		
6.8	205.95	0.55	716	0.9	0.52	675	В				С	С		ø40
6.3	222.52	0.55	774	0.9	0.48	675	В				С	С		ESTÁNDAR
5.6	248.76	0.37	578	1.2	0.43	675	В				С	С		
4.8	290.41	0.37	675	1.0	0.37	675	В				С	С		
4.1	337.39	0.37	784	0.9	0.32	675	В				00000	С		
3.6	393.88	0.25	618	1.1	0.27	675	В				С	С		
3.2	440.33	0.25	690	1.0	0.24	675	В				С	С		
2.7	514.06	0.18	616	1.1	0.21	675	В				С	С		
2.4	581.44	0.18	697	1.0	0.18	675	В				С	С		
2.1	678.79	0.12	526	1.3	0.16	675	В			-	С	C		

BRIDAS DISPONIBLES

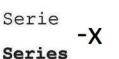
B) LLEVAN CASQUILLO PARA ADAPTAR

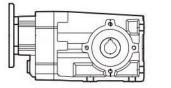
B) NO ES NECESARIO CASQUILLO



El reductor tamaño X74C se suministra lubricado de por vida con aceite sintético y no requieren de ningún mantenimiento

Ver tabla 1 para cantidades y aceites recomendados


CANTIDAD ESTÁNDAR	CANTIDAD ACEITE SEGÚN POSICIÓN DE FUNCIONAMIENTO										
B 3	B6	B7	B8		V5	V6	V8				
3.55 LT	2.65 LT	1.90 LT	2.0	5 LT	4.25 LT	2.65 LT	PREGUNTAR				
AG	IP Telium \	/SF 320			SHELL Or	nala S4 WE	E 320				
							tab. 1				



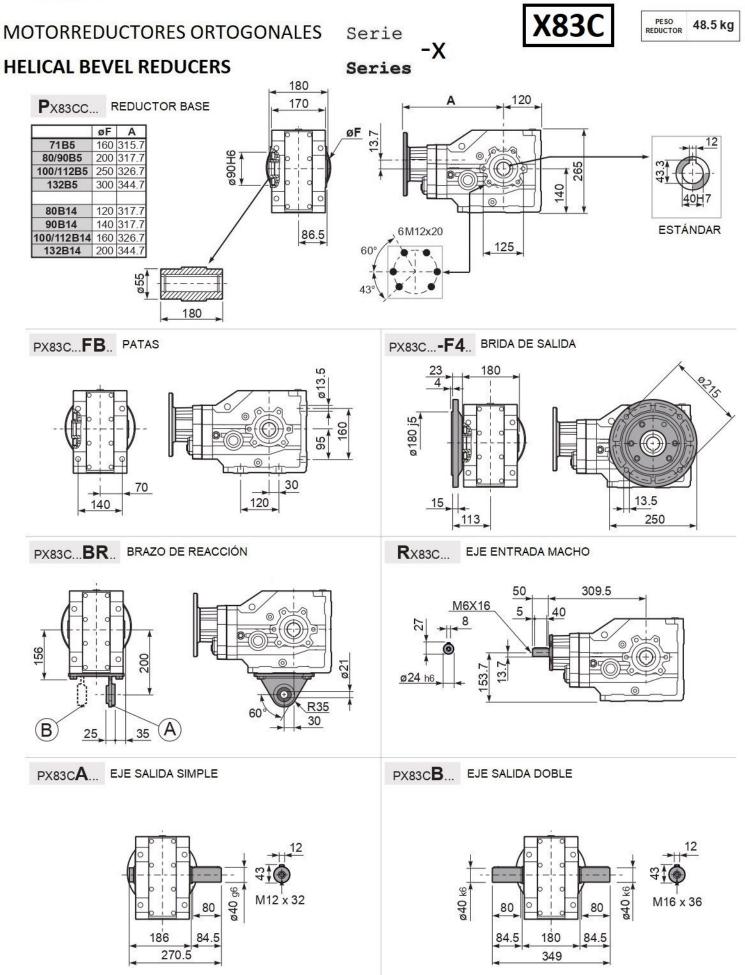
Serie

HELICAL BEVEL REDUCERS

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			PONIBL DAS MO					BLE B14 S MOTOR		EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M_{2M}	SERVICIO	P _{1R}	M _{2R}	-C	-D	-E	-F	-G	-R	-T	-U	-V	
[min ⁻¹]		[kW]	[Nm]	f.s.	[kŴ]	[Nm]	71	80	90	100 112	132	80	90	100 112	132	0
145	9.69	9	560	1.3	12.2	755	В									
126	11.09	9	641	1.1	9.6	680	В									
108	12.90	9	746	1.1	9.6	790	В									
77	18.26	7.5	849	1.1	8.0	935	В									
67	20.91	7.5	972	1.0	7.5	1000	В									
58	24.32	5.5	835	1.2	6.4	1000	В									
49.5	28.27	5.5	971	1.0	5.5	1000	В									
42.6	32.88	4	826	1.2	4.7	1000	В									
38.1	36.76	4	924	1.1	4.2	1000	В									ø40
32.7	42.76	3	809	1.2	3.6	1000	В									ESTÁNDAR
31.1	45.00	3	851	1.2	3.5	1000	88888888888888									
26.8	52.33	3	990	1.0	3.0	1000	В									
24.6	56.82	2.2	791	1.1	2.3	850	В									
21.5	65.07	2.2	906	1.1	2.3	975	В									
18.5	75.68	2.2	1054	0.9	2.1	1000	В									
15.6	89.61	1.1	628	1.1	1.2	710	В									
13.4	104.22	1.1	731	1.1	1.2	820	В									

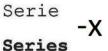
BRIDAS DISPONIBLES

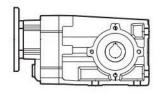
B) LLEVAN CASQUILLO PARA ADAPTAR


B) NO ES NECESARIO CASQUILLO

C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño X83C se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.





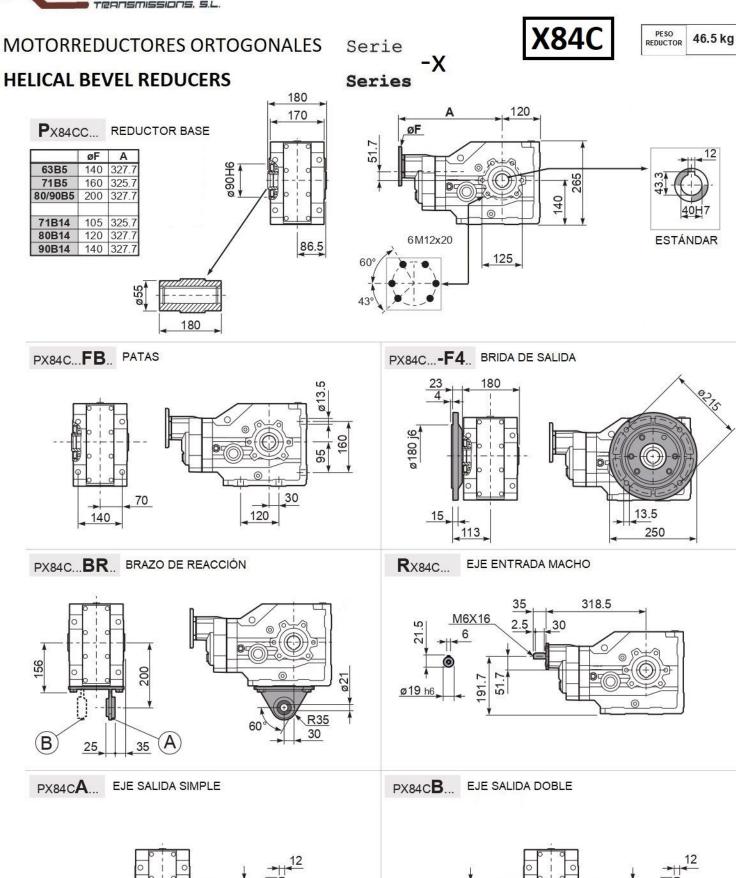
Serie

HELICAL BEVEL REDUCERS

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			NIBLE BE S MOTOR	333	100000	PONIBLE B	2010	EJE HUECO DE SALIDA
n ₂ [min ⁻¹]	i	P₁м [kW]	M _{2M} [Nm]	f.s.	P _{1R} [kW]	M _{2R} [Nm]	-B 63	-C 71	-D 80	-E 90	-Q 71	-R 80	-T 90	
15.3	91.23	1.5	858	1.2	1.7	1000	В				С	С		
13.4	104.48	1.5	983	1.0	1.5	1000	В				С	C		
11.6	121.10	1.5	1139	0.9	1.3	1000	В				Č	С		
9.9	140.84	1.1	968	1.0	1.1	1000	В				C	С		
8.5	165.32	1.1	1136	0.9	0.96	1000	В				С	С		
7.6	184.94	0.75	872	1.1	0.86	1000	В				С	С		
7.1	197.34	0.75	930	1.1	0.81	1000	В				0000	С		
6.5	215.10	0.75	1014	1.0	0.74	1000	В				С	С		
6.0	231.60	0.55	805	1.2	0.69	1000	В				С	С		
5.6	249.31	0.55	867	1.2	0.64	1000	В				С	С		ø40
5.2	269.37	0.55	937	1.1	0.59	1000	В				00000	С		ESTÁNDAR
4.8	292.64	0.55	1018	1.0	0.54	1000	В				С	С		
4.6	302.26	0.55	1051	1.0	0.53	1000	В				С	С		
4.0	349.30	0.37	812	1.2	0.46	1000	В				С	С		
3.5	399.12	0.37	928	1.1	0.40	1000	В				С	С		
2.9	476.80	0.37	1108	0.9	0.33	1000	В				С	С		
2.2	622.28	0.25	976	1.0	0.26	1000	В				С	С		
1.7	821.70	0.18	985	1.0	0.19	1000	В				С	C		

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO PARA ADAPTAR


B) NO ES NECESARIO CASQUILLO

C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño X84C se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.

B3	B6	B7	B8	V5	V6	V8
4.25 LT	3.20 LT	2.10 LT	2.60 LT	5.20 LT	2.90 LT	PREGUNTAR
		AG	IP Blasia 4	60		

M12 x 32

186

270.5

84.5

M16 x 36

80

84.5

180

349

84.5

Serie

HELICAL BEVEL REDUCERS

Series

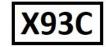
ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL		DISPONI				BRIDAS	MOTOR		EJE HUECO DE SALIDA
n ₂ [min ⁻¹]	i	P₁м [kW]	M _{2M} [Nm]	f.s.	P _{IR} [kW]	M _{2R} [Nm]	-F 100 112	-G 132	-H 160	-I 180	-	-	-	-	
236	5.94	22	806	1.0	21.0	800	В								-
196	7.13	18.5	812	1.0	17.9	820	В								
163	8.58	18.5	977	1.0	17.3	950	В								
125	11.20	15	1033	1.0	13.9	1000	В								
104	13.43	15	1239	1.1	15.7	1350	В								
92	15.15	15	1397	1.0	14.4	1400	В								182090V
87	16.17	15	1492	1.0	14.0	1450	В								ø50
77	18.16	15	1675	0.9	13.3	1550	В				N)			ESTÁNDAR
71	19.70	11	1335	1.2	12.3	1550	В				DI	SPC	NIB	LE	
64	21.87	11	1482	1.1	11.4	1600	В							5000000000	ø45
59	23.62	11	1600	1.0	10.6	1600	В								BAJO
48.4	28.91	9	1671	1.0	8.6	1600	В								DEMANDA
40.2	34.81	7.5	1618	1.0	7.2	1600	В								
33.5	41.81	5.5	1436	1.1	6.0	1600	В								
27.8	50.34	5.5	1729	0.9	5.0	1600	В								

BRIDA'S DISPONIBLES

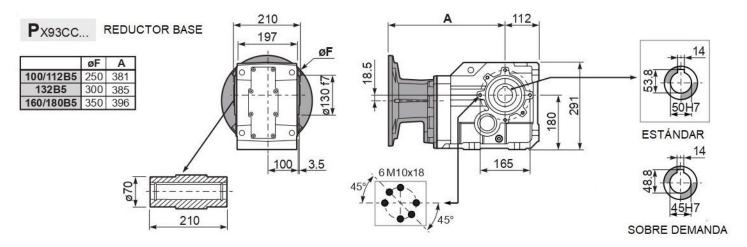
B) LLEVAN CASQUILLO PARA ADAPTAR

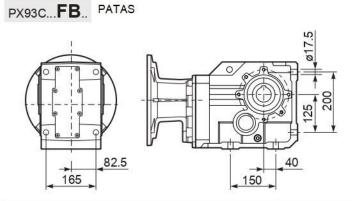
B) NO ES NECESARIO CASQUILLO

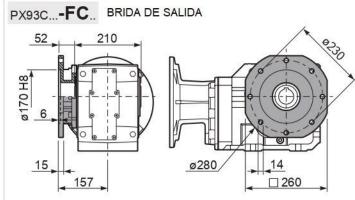
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR


El reductor tamaño **X93C** se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.

CANTIDAD ESTÁNDAR	CANTI	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAM	IIENTO
B 3	1 B6	B 7	B8	V5	V6	V8
4.20 LT	3.60 LT	4.40 LT	5.10 LT	7.10 LT	5.00 LT	PREGUNTAR
AG	IP Telium	VSF 320		SHELL Or	nala S4 WE	320

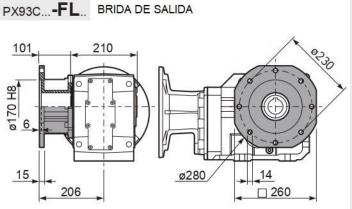


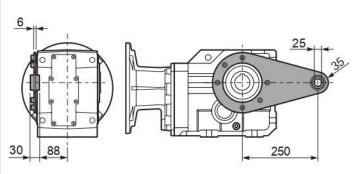


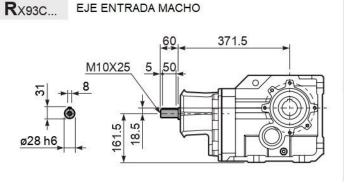

PESO 75.0 kg

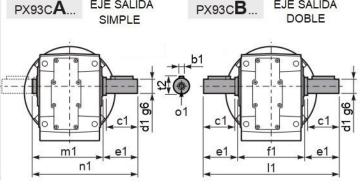
HELICAL BEVEL REDUCERS

Series

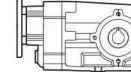


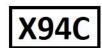



PX93C...BR... BRAZO DE REACCIÓN


EJE SALIDA

PX93CA...




	b1	с1	d1	e1	f1	11	m1	n1	t2	01
ESTÁNDAR	14	100	50	105	210	420	218	323	53.5	M16
-	-	826	-	-	002	(7 <u>2</u>)	_		-	

EJE SALIDA

Serie

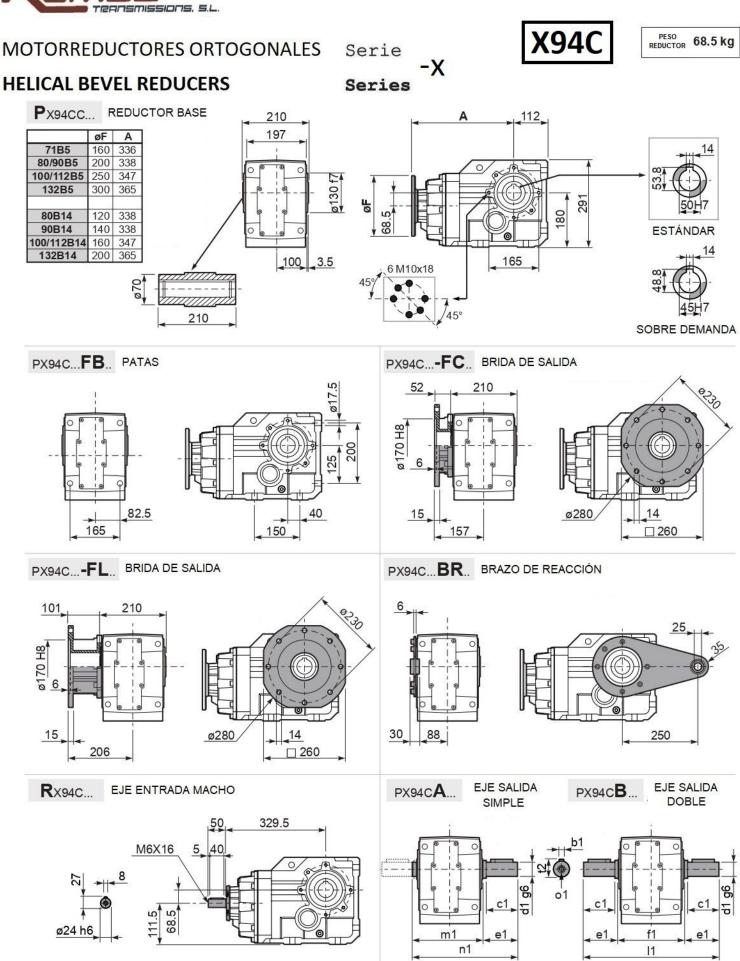
HELICAL BEVEL REDUCERS

Series

/ELOCIDAD DE SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			ONIBL OAS MO					BLE B14 MOTOR	8	EJE HUECO DE SALIDA
n,	i	P _{1M}	M_{2M}	SERVICIO	P _{1R}	M _{2R}	-C	-D	-E	-F	-G	-R	-T	-U	-V	
[min ⁻¹]	1	[kW]	[Nm]	f.s.	[kŴ]	[Nm]	71	80	90	100 112	132	80	90	100 112	132	Ø
45.6	30.70	7.5	1399	1.1	8.3	1600	В									
37.9	36.97	7.5	1685	0.9	6.9	1600	В									
29.0	48.26	5.5	1625	1.0	5.3	1600	ВВ									
24.2	57.86	4	1425	1.1	4.4	1600	В									
21.5	65.24	4	1607	1.0	3.9	1600	В									
20.1	69.68	4	1716	1.0	3.8	1650	В									
17.9	78.23	3	1450	1.1	3.4	1650	В									ø50
16.5	84.85	3	1573	1.0	3.0	1600	В									ESTÁNDAR
14.9	94.20	3	1747	0.9	2.8	1650	В									
13.8	101.74	3	1886	0.9	2.6	1650	В									ø45
11.4	122.51	2.2	1672	1.0	2.1	1650	В									BAJO
9.3	149.95	1.5	1411	1.2	1.8	1650	В									DEMANDA
7.8	180.09	1.5	1694	1.0	1.5	1650	В									
6.8	206.81	1.1	1421	1.1	1.2	1600	В									
6.5	216.85	1.1	1490	1.1	1.2	1650	В									
5.6	247.99	1.1	1704	1.0	1.1	1650	В									
4.7	298.61	0.75	1407	1.2	0.88	1650	В									

BRIDAS DISPONIBLES

B) LLEVAN CA SQUILLO PARA ADAPTAR


B) NO ES NECESARIO CASQUILLO

C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño **X94C** se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.

CANTIDAD ESTÁNDAR	CANTIL	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAM	IIENTO
B 3	E 6	B 7	B8	V5	V6	V8
4.50 LT	3.80 LT	4.50 LT	5.30 LT	7.60 LT	5.30 LT	PREGUNTAR
AG	IP Telium \	/SF 320	,	SHELL Or	nala S4 WE	320

b1

14

ESTÁNDAR

c1

100

d1

50

e1

105

f1

210

11

420

m1

218

n1

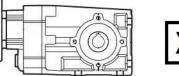
323

t2

53.5

01

M16


1	1	-
	- 1	- 1

Serie

Series

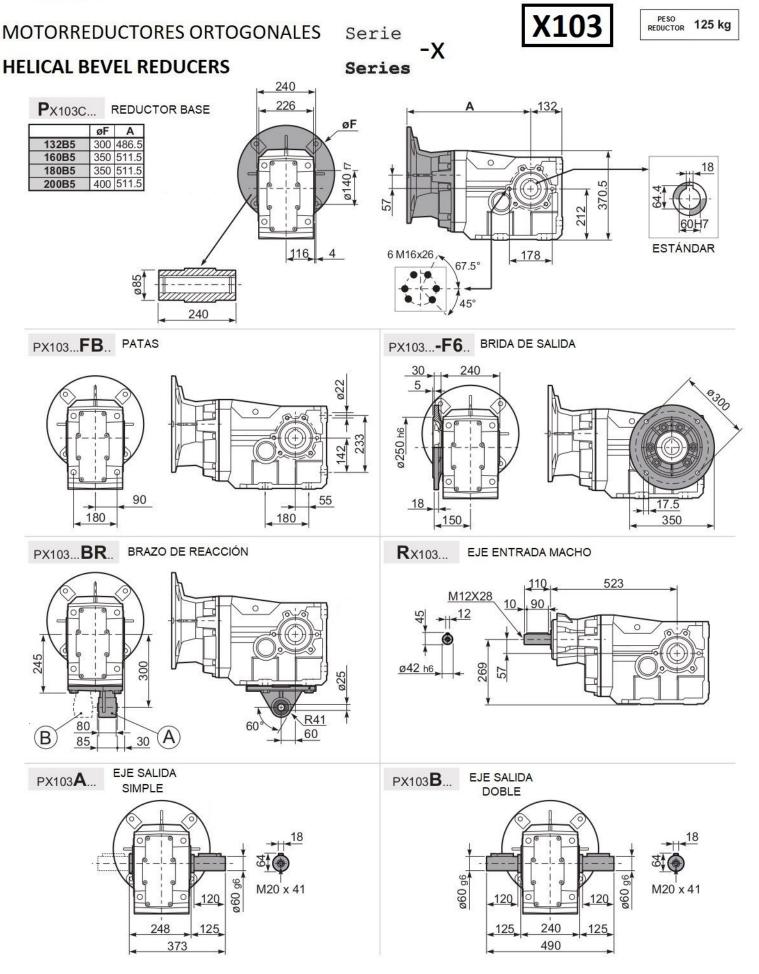
X103

HELICAL BEVEL REDUCERS

VELOCIDAD DE SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			NIBLE BE S MOTOR			DISPONIE	MOTOR		EJE HUECO DE SALIDA
n ₂ [min ⁻¹]	i	P₁м [kW]	M _{2M} [Nm]	f.s.	P _{1R} [kW]	M _{2R} [Nm]	-G 132	-H 160	-l 180	-L 200	-	-	-	-	ø
040	0.00	20	4400		04.7	4000	102	100	100	200					
219	6.39	30	1180	1.1	31.7	1300									
200 164	7.00 8.55	30 30	1292 1578	1.1 1.0	31.2 27.4	1400 1500									
		22	1357	1.0	24.9	1600									
140 128	10.01 10.97	22	1486	1.1	24.9	1700									
105	13.39	22	1815	1.2	24.2	2100									
89	15.71	22	2130	1.0	21.8	2200									
81	17.21	22	2333	1.0	20.8	2300					N	0			
67	21.02	18.5	2394	1.0	17.8	2400					10000				
59	23.73	18.5	2703	1.0	17.1	2600					D	SPC	MIR	LE	ø60
54	25.99	18.5	2960	0.9	16.8	2800									ESTÁNDAR
50	27.93	15	2576	1.1	16.2	2900									
45.8	30.59	15	2822	1.0	14.8	2900									
44.1	31.74	15	2928	1.0	14.2	2900									
37.5	37.36	11	2532	1.1	12.1	2900									
33.8	41.37	11	2804	1.0	10.9	2900									
30.9	45.31	9	2618	1.1	10.0	2900									
25.3	55.33	7.5	2573	1.2	8.5	3000									

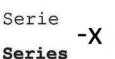
BRIDAS DISPONIBLES

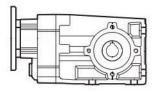
B) LLEVAN CASQUILLO PARA ADAPTAR

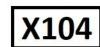

B) NO ES NECESARIO CASQUILLO

C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño **X103** se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.


CANTIDAD ESTÁNDAR	CANTIE	DAD ACEITE	SEGÚN PO	SICIÓN DE F	UNCIONAN	MIENTO
B3 •	B6 •	○	В 8	V5	V6	V8 TH
11.50 LT	5.50 LT	10.50 LT	7.50 LT	13.50 LT	9.50 LT	PREGUNTAR
		AG	IP Blasia	160		





Serie

HELICAL BEVEL REDUCERS

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL		MOTOR	5000	ONIBLE DAS MO	275 (150 50	EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M_{2M}	SERVICIO	P _{1R}	M _{2R}	-F	-G	-	-	-	
[min ⁻¹]	1	[kW]	[Nm]	f.s.	[kW]	[Nm]	100 112	132		-	-	0,
28.8	48.57	9	2750	1.1	9.5	2900	В					
20.5	68.43	7.5	3118	1.0	7.0	3000	В		III			
18.7	74.95	5.5	2523	1.2	6.4	3000	B B		Ш			
15.1	92.53	5.5	3115	1.0	5.2	3000	В		!!!			
13.8	101.33	11960	2496	1.2	4.7	3000	В					
11.6	120.33		2963	1.0	4.0	3000	В		NO			
11.3	123.75	33	3048	1.0	3.9	3000	В		DISP	ONI	DI E	
10.6	131.78	4	3245	0.9	3.6	3000	В		DISF	ON	DLE	ø60
9.5	147.28	5222	2731	1.1	3.2	3000	В					ESTÁNDAR
8.7	161.30	3	2990	1.0	3.0	3000	В					
7.1	196.98	2.2	2689	1.1	2.4	3000	В					
6.6	212.99	2.2	2907	1.0	2.2	3000	В					
6.0	233.26	2.2	3184	0.9	2.0	3000	В					
4.9	284.86	2.2	3889	0.8	1.7	3000	В		and a			

BRIDAS DISPONIBLES

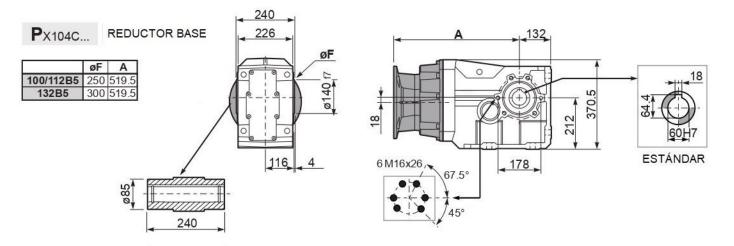
B) LLEVAN CASQUILLO PARA ADAPTAR

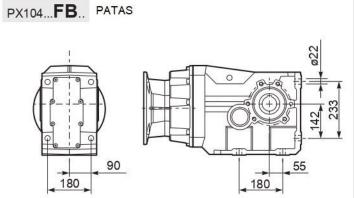
B) NO ES NECESARIO CA SQUILLO

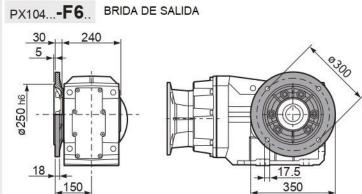
C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

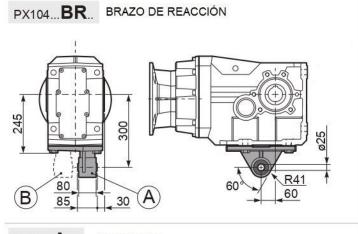
El reductor tamaño X104 se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.

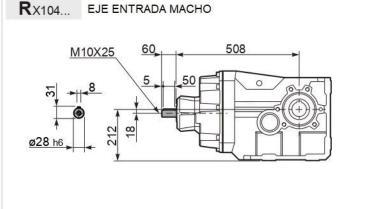
CANTIDAD ESTÁNDAR	CANTI	CANTIDAD ACEITE SEGÚN POSICIÓN DE FUNCIONAMIENTO												
B3 •	B6 •	- ◎	B8	V5	V6 -	V8								
11.50 LT	6.00 LT	11.50 LT	8.00 LT	14.50 LT	11.00 LT	PREGUNTAR								
A CONTROL OF THE PROPERTY.		AC	SIP Blasia	460										

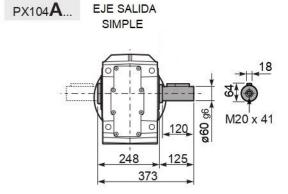

Serie

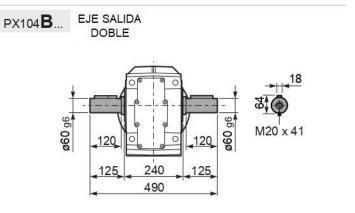

X104

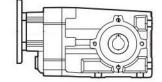

PESO 118 kg


HELICAL BEVEL REDUCERS


Series







Serie

X113

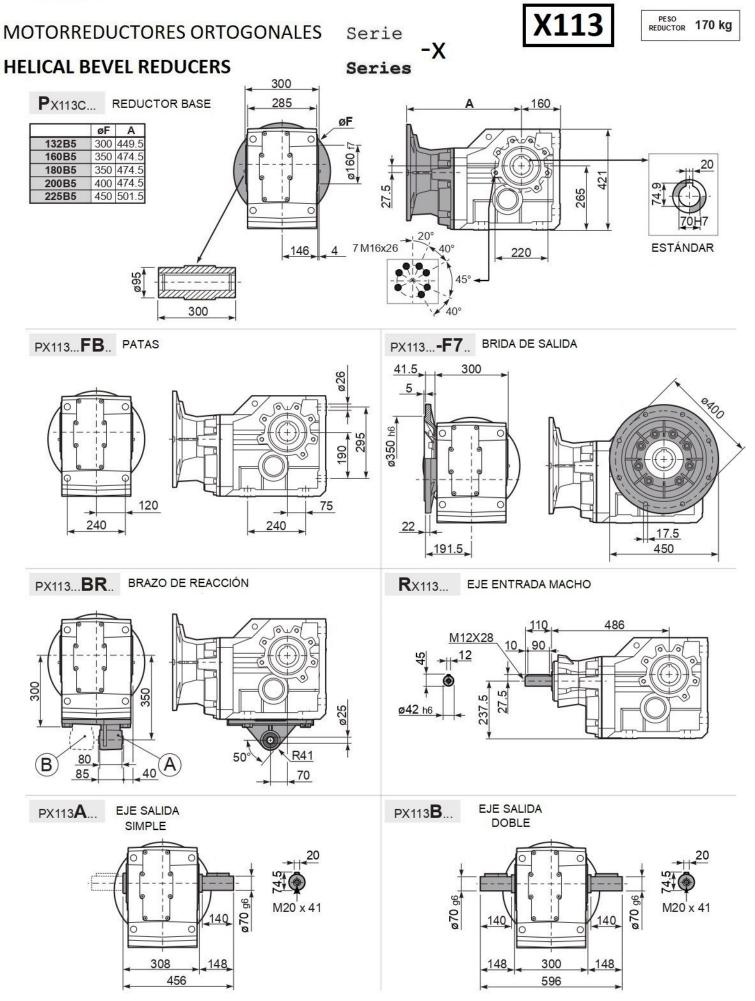
HELICAL BEVEL REDUCERS

Series

/ELOCIDAD DE SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL			SPONIBLE IDAS MO			-	ONIBLE DAS MOT		EJE HUECO DE SALIDA
n ₂	i	P _{1M}	M _{2M}	SERVICIO	P _{1R}	M _{2R}	-G	-H	-l	-L	CA	-	-	-	
[min ⁻¹]		[kW]	[Nm]	f.s.	[kW]	[Nm]	132	160	180	200	225	=	-	-	ø
219	6.39	45	1757	1.4	61.0	2500						1			
200	7.00	45	1925	1.4	59.0	2650									
164	8.55	45	2350	1.2	51.1	2800									
140	10.01	45	2752	1.2	49.8	3200									
128	10.97	45	3014	1.1	45.5	3200									
105	13.39	37	3025	1.1	39.6	3400									
89	15.71	37	3550	1.0	34.7	3500									
81	17.21	37	3888	1.0	33.5	3700									
67	21.02	30	3877	1.0	29.7	4000					-	NO			ø70
59	23.73	30	4378	0.9	26.9	4100						DISF	ONII	BLE	
54	25.99	22	3523	1.2	25.8	4300									ESTÁNDAR
50	27.93	22	3786	1.1	24.0	4300									
45.8	30.59	22	4146	1.1	22.9	4500									
44.1	31.74	22	4302	1.0	22.1	4500									
37.5	37.36	18.5	4255	1.1	18.8	4500									
33.8	41.37	18.5	4712	1.0	17.0	4500									
30.9	45.31	15	4179	1.1	15.5	4500									
25.3	55.33	11	3750	1.2	12.7	4500									

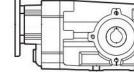
BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO PARA ADAPTAR


B) NO ES NECESARIO CASQUILLO

C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño **X113** se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.


CANTIDAD ESTÁNDAR	CANTIE	AD ACEITE	SEGÚN POS	SICIÓN DE F	UNCIONAM	IENTO
●	© B6 ●	⊖	₽ B 8 •	V5	V6 -	V8
13.50 LT	8.00 LT	15.50 LT	14.50 LT	22.00 LT	13.00 LT	PREGUNTAR
	fit.	AC	GIP Blasia	460	î .	**

Serie

X114

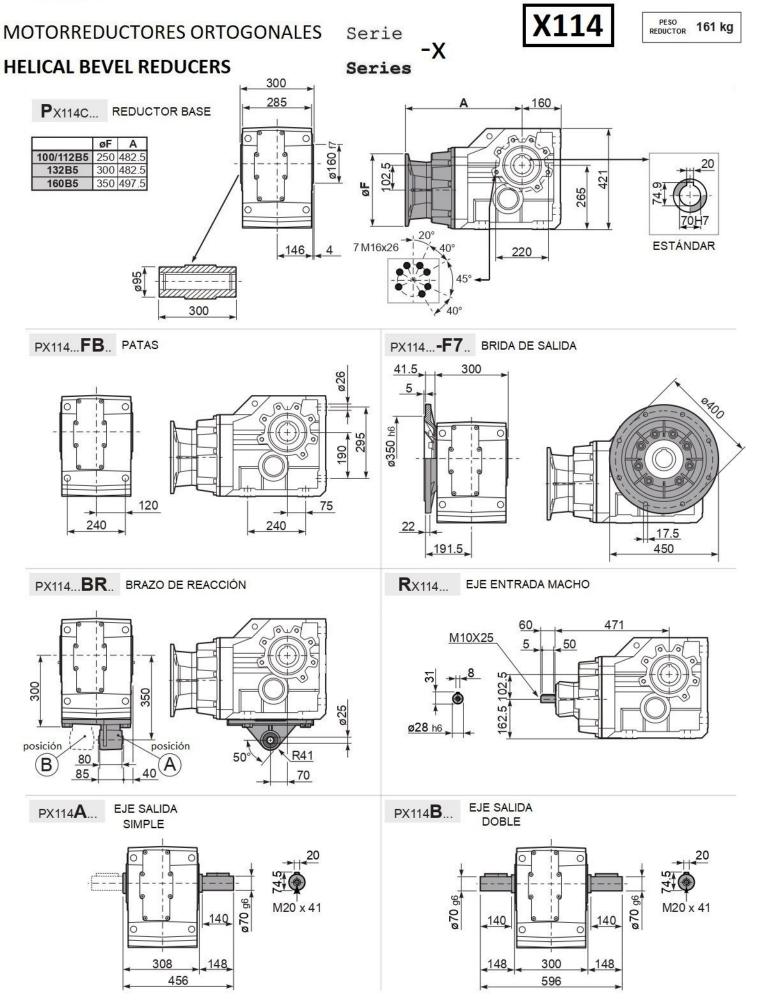
HELICAL BEVEL REDUCERS

Series

ELOCIDAD E SALIDA	RELACIÓN	POTENCIA	PAR SALIDA	FACTOR DE	POTENCIA NOMINAL	PAR NOMINAL		ISPONIBLE RIDAS MOT		a m	ONIBLE DAS MO	The state of the s	EJE HUECO DE SALIDA
		D	NA	SERVICIO	D	M _{2R}	-F	-G	-H	-	-	n=	
n ₂ [min ⁻¹]	ı.	P _{IM} [kW]	M _{2M} [Nm]	f.s.	P _{IR} [kW]	[Nm]	100 112	132	160	-		-	Ø
28.8	48.57	15	4390	1.0	14.8	4500	В						
20.5	68.43	11	4545	1.0	10.7	4600	В						
18.7	74.95	11	4977	0.9	9.8	4600	В						
15.1	92.53	7.5	4216	1.1	7.9	4600	В						
13.8	101.33	7.5	4617	1.0	7.2	4600	В						
11.6	120.33		4051	1.1	6.1	4600	В						
11.3	123.75	5.5	4166	1.1	5.8	4500	В			NO			
10.6	131.78		4436	1.0	5.6	4600	В			DISE	PONI	BLE	ø70
9.5	147.28	5.5	4958	0.9	5.0	4600	В						ESTÁNDAR
8.7	161.30		3972	1.2	4.5	4600	В						ESTANDAR
7.1	196.98	3	3652	1.2	3.6	4500	В						
6.6	212.99	3	3949	1.2	3.4	4600	В						
6.0	233.26		4324	1.1	3.1	4600	В						
4.9	284.86	2.2	3889	1.2	2.5	4500	В						

BRIDAS DISPONIBLES

B) LLEVAN CASQUILLO


B) NO ES NECESARIO CA SQUILLO

C) POSICIÓN AGUJEROS MONTAJE BRIDA MOTOR

El reductor tamaño **X114** se suministra sin lubricante, provisto de tapones de respiración, nivel y descarga de aceite. El usuario puede utilizar aceite mineral, manteniendo los tapones existentes. Si prefiere utilizar aceite sintético deberá sustituir los tapones existentes por tapones ciegos. La prerreducción se suministra con tapones ciegos, lubricado de por vida con aceite sintético. Ver tabla 1, para cantidades y aceites recomendados.

CANTIDAD ESTÁNDAR	CANTIE	AD ACEITE	SEGÚN POS	SICIÓN DE F	UNCIONAM	IENTO
●	© B6 ●	₽	● 	V5	V6	V8
14.50 LT	8.50 LT	16.50 LT	16.00 LT	23.00 LT	14.50 LT	PREGUNTAR
		AC	SIP Blasia 4	460		

Motores/Motors/Moteurs

Motor trifásico

Rev.: 750-1000-1500-3000 Rpm Pot.: Desde 0,06 Kw a 315 Kw

Págs.: 127-129

Motor trifásico con freno

Rev.: 750-100-1500-3000 Rpm Pot.: Desde 0,09 Kw a 37 Kw

Págs.: 131-133

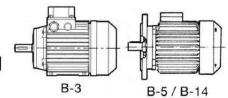
Motor trifásico con ventilación forzada

Rev.: 750-100-1500-3000 Rpm Pot.: Desde 0,06 Kw a 315 Kw

Págs.: 130

Alimentación Trifásica

Pot.: Hasta 220 Kw


Alimentación monofásica

Pot.: Hasta 2,2 Kw

Págs.: 134-137

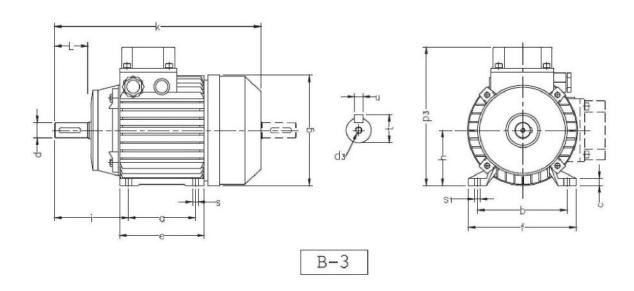
PROGRAMA DE FABRICACIÓN

- MOTORES TRIFASICOS C. ALTERNA ASINCRONOS

- A.C. ASYNCHRONOUS THREE - PHASE MOTOR

2 polos 3000 rpm / 4 polos 1500 rpm / 6 polos 1000 rpm / 8 polos 750 rpm

		3000	15	500		1000	7	50	•
	KW	CV	KW	CV	KW	CV	KW	CV	Kg
50			0,06	0,08				100	2,4
56	0,09	0,12	0,06 -	0,08			4:10		3,2
	0,12	0,16	0,09 -	0,12					3,4
	0,18	0,25	0,12 -	016	0,09	0,12		-	4
63	0,25	0,33	0,18	0,25	0,12	0,16			4,5
	0,37	0,50	0,25	0,33					4,7
	0,37	0,50	0,25	0,33	0,18	0,25			5,3
71	0,55	0,75	0,37	0,50	0,25	0,33	0,12	0,16	5,5
a 1 30	0,75	1	0,55	0,75					6,3
	0,75	1	0,55	0,75	0,37	0,50			8,2
80	1,1	1,5	0,75	1			0,25	0,33	9,3
	1,5	2	0,92	1,25	0,55	0,75			10,5
	1,5	2	1,1	1,5	0,75	1	0,37	0,50	12,5
90-S	1,8	2,5							13,2
	2,2	3	1,5	2					15
90-L			1,8	2,5	1,1	1,5	0,55	0,75	14,5
	3	4	2,2	3					17
	3	4	2,2	3	1,5	2	0,75	1	19,5
100-L	4	5,5	3	4	1,8	2,5	1,1	1,5	21
			4	5,5					25
112	4	5,5	4	5,5	2,2	3			27,5
10.00	5,5	7,5	5,5	7,5	3	4	1,5	2	33,5
132-S	5,5	7,5	5,5	7,5	3	4	2,2	3	43
100	7,5	10				e felle	73.54		46
	9,2	12,5	7,5	10	4	5,5			50
132-M	11	15	9,2	12,5	5,5	7,5	3	4	54
	15	20	11	15	7,5	10			61
160-M	-11	15	11	15	7,5	10	4	5,5	85
	15	20					5,5	7,5	95
	18,5	25	15	20		4			106
160-L	22	30	18,5	25	11	15	7,5	10	108
			22	30					112
180-M	22	30							132
	30	40	18,5	25	15	20	11	15	150
180-L			22	30	15	20	11	15	148
-	1 1		30	40					150
200	30	40	30	40	18,5	25	15	20	220
	37	50	37	50	22	30			240
225	45	60	37	50	30	40	18,5	25	315
			45	60	7		22	30	323
250	55	75	55	75	37	50	30	40	360
280-S	75	100	75	100	45	60	37	50	475
280-M	90	125	90	125	55	75	45	60	520
315-S	110	150	110	150	75	100	55	75	690
315-M	132	180	132	180	90	125	75	100	800



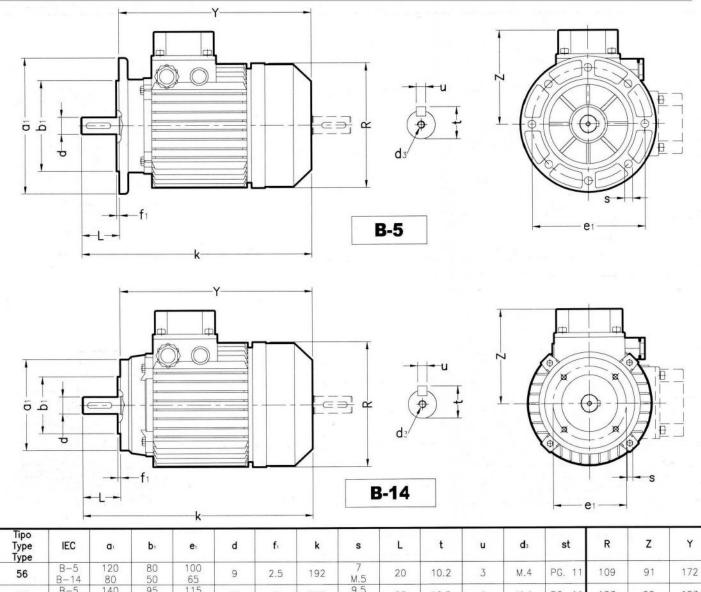
MOTORES TRIFÁSICOS C. ALTERNA

A.C. THREEPHASE MOTORS

B-3

Dimensiones

Tipo Type Type	а	Ь	С	d j6	е	f	g	h	i	k	P 3	s	Sı	L	t	u	d ₃	st
56	71	90	6	9	90	110	109	56	56	190	154	6	11	20	10.2	3	M.3	-
63	80	100	8	11	105	126	123	63	63	213	166	7	11	23	12.5	4	M.4	-
71	90	112	9	14	109	144	138	71	75	245	183	7	15	30	16	- 5	- M.5	-
80	100	125	9.5	19.	125	153	159	80	90	272	209	9	17	40	21.5	6	M.6	-
90-S	100	140	11	24	150	170	176	90	106	317	228	10	17	50	27	8	М.8	-
90-L	125	140	11	24	150	170	176	90	106	317	228	10	17	50	27	8	М.8	-
100	140	160	12	28	166	192	205	100	123	366	245	12	17	60	31	8	M.10	-
112	140	190	15	28	175	220	218	112	130	388	273	12	19	60	31	8	M.10	-
132-S	140	216	20	38	175	260	258	132	169	449.5	330	12	14	80	41	10	M.12	-
132-M	178	216	20	38	215	260	258	132	169	487.5	330	12	14	80	41	10	M.12	_
160-M	210	254	20	42	260	292	310	160	218	613	406	13	14	110	45	12	M.16	-
160-L	254	254	20	42	294	292	310	160	218	657	406	13	14	110	45	12	M.16	-
180-M	241	279	22	48	324	330	390	180	231	712	446	13	18	110	51.5	14	M.16	-
180-L	279	279	22	48	324	330	390	180	231	712	446	13	18	110	51.5	14	M.16	-
200-L	305	318	18	55	360	380	405	200	259	779	541	16	18	110	59	16	M.20	-
225- S M	286 311	355	22	60	375	420	463	225	289	887.5	585	16	18	140	64	18	M.20	-
250-M	349	406	45	65	425	500	516	250	308	971.5	640	20	20	140	69	18	M.20	-



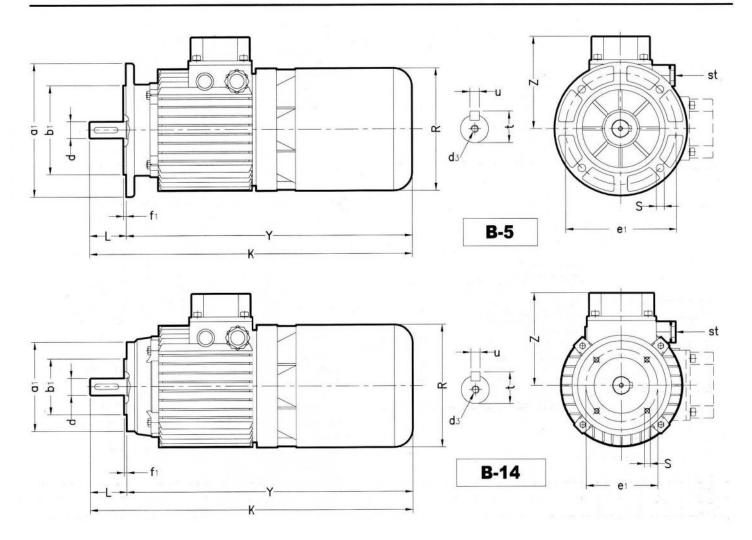
MOTORES TRIFÁSICOS C. ALTERNA

A.C. THREEPHASE MOTORS

B-5 B-14

Dimensiones

Tipo Type Type	IEC	a۱	b ₁	e,	d	fı	k	s	L	t	u	d ₃	st	R	Z	Y
56	B-5 B-14	120 80	80 50	100 65	9	2.5	192	7 M.5	20	10.2	3	M.4	PG. 11	109	91	172
63	B-5 B-14	140 90	95 60	115 75	11	3	206	9.5 M.5	23	12.5	4	M.4	PG. 11	123	92	183
71	B-5 B-5 R B-14	160 140 105	110 95 70	130 115 85	14	3.5 3 2.5	245	9.5 9.5 M.6	30	16	5	M.5	PG. 11	138	102	215
80	B-5 B-5 R B-14	200 160 120	130 110 80	165 130 100	19	3.5 3.5 3.5	280	11 9.5 M.6	40	21.5	6	M.6	PG. 16	159	120	240
90-S 90-L	B-5 B-5 R	200 160	130 110	165 130	24	3.5 3.5	305 330	11.5 9.5	50	27	8	м.8	PG. 16	176	126	255 280
100	B-14 B-5 B-14 B-14	140 250 200 160	95 180 130 110	115 215 165 130	28	3.5 4 3.5 3.5	365	M.8 13 11.5 M.8	60	31	8	M.10	PG. 16	205	146	305
112	B-5 B-14 B-14	250 200 160	180 130 110	215 165 130	28	4 3.5 3.5	392	13 9.5 M.8	60	31	8	M.10	PG. 16	218	152	332
132-S	B-5 B-14	300 200	230 130	265 165	38	4 5	462	13 M.10	80	41	10	M.12	PG. 21	258	203	382
132-M	B-5 B-14	300 200	230 130	265 165	38	4 5	500	13 M.10	80	41	10	M.12	PG. 21	258	178	420
160-M	B-5 B-14	350 250	250 180	300 215	42	5 4	613	18 M.12	110	45	12	M.16	PG. 21	310	232	503
160-L	B-5 B-14	350 250	250 180	300 215	42	5 4	613	18 M.12	110	45	12	M.16	PG. 21	310	232	503
180-M	B-5	350	250	300	48	5 4	712	18	110	51.5	14	M.16	PG. 11	390	262	602
200-L	B-5	400	300	350	55	5	779	18	110	59	16	M.20	-	405	341	669
225- S M	B-5	450	350	400	60	5	887.5	18 (8)	140	64	18	M.20	-	463	360	747.5
250-M	B-5	550	450	500	65	5	971.5	18 (8)	140	69	18	M.20	-	416	390	831.5

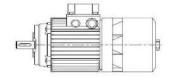


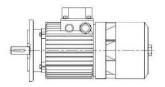
MOTORES ELECTRICOS C.A. (VENTILACIÓN FORZADA)

THREEPHASE MOTOR WITH FORCED COOLING

B-5 B-14

Dimensiones


Tipo Type Type	IEC	a 1	b 1	e 1	d	f 1	К	S	L	t	u	d 3	st	R	Z	Y
63	B-5 B-14	140 90	95 60	115 75	11	3	245	9.5 M.5	23	12.5	4	M.4	PG.11	123	92	222
71	B-5 B-5-R B-14	160 140 105	110 95 70	130 115 85	14	3.5 3 2.5	296	9.5 9.5 M.6	30	16	5	M.5	PG.11	138	102	266
80	B-5 B-5-R B-14	200 160 120	130 110 80	165 130 100	19	3.5	322	11 9.5 M.6	40	21.5	6	M.6	PG.16	159	120	282
90-S 90-L	B-5 B-5-R B-14	200 160 140	130 110 95	165 130 115	24	3.5	361 386	11.5 9.5 M.8	50	27	8	M.8	PG.16	176	126	301 336
100	B-5 B-14 B-14	250 200 160	180 130 110	215 165 130	28	4 3.5 3.5	439	13 11.5 M.8	60	31	8	M.10	PG.16	205	146	379
112	B-5 B-14 B-14	250 200 160	180 130 110	215 165 130	28	4 3.5 3.5	462	13 9.5 M.8	60	31	8	M.10	PG.16	218	152	402
132-S	B-5 B-14	300 200	230 130	265 165	38	4 5	534	13 M.10	80	41	10	M.12	PG.21	258	203	454
132-M	B-5 B-14	300 200	230 130	265 165	38	4 5	572	13 M.10	80	41	10	M.12	PG.21	258	178	492
160-M	B-5 B-14	350 250	250 180	300 215	42	5 4	594	18 M.12	110	45	12	M.16	PG.21	310	232	484
160-L	B-5 B-14	350 250	250 180	300 215	42	5 4	638	18 M.12	110	45	12	M.16	PG.21	310	232	528
180-M	B-5	350	250	300	48	5	_710	18	110	51.5	14	M.16	PG.21	390	262	600



PROGRAMA DE FABRICACIÓN

MOTORES ELÉCTRICOS DE C.ALTERNA CON FRENO

A.C. POWER BRAKE ELECTRIC MOTORS

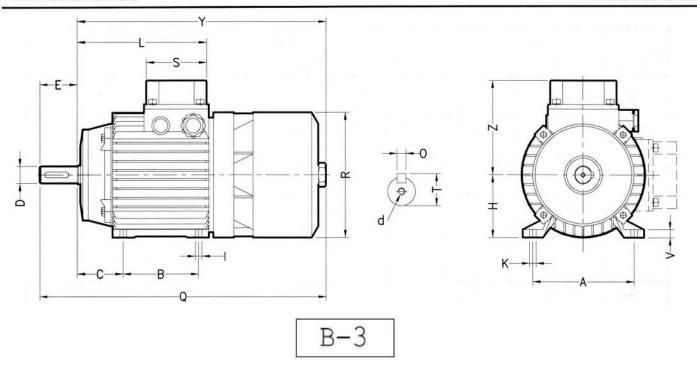
2 polos 3000 Rpm / 4 polos 1500 Rpm / 6 polos 1000 Rpm / 8 polos 750 Rpm

Modelo	30	00	15	00	10	00	7	50	Peso
	KW	CV	KW	CV	KW	CV	KW	CV	
56	0,09	0,12	0,06	0,08					4,8
330.000	0,12	0,17	0,09	0,12					5
	0,18	0,25	0,12	0,16	0,09	0,12	0,07	0,1	6
63	0,25	0,33	0,18	0,25	0,12	0,16			5,5
	0,37	0,5							4,5
	0,37	0,5	0,25	0,33	0,18	0,25	0,08	0,11	7,5
71	0,55	0,75	0,37	0,5	0,25	0,33	0,11	0,15	8
			0,55	0,75					7
			0,65	0,9					8
80	0,75	1	0,55	0,75	0,37	0,5	0,18	0,25	14,5
	1,1	1,5	0,75	1	0,55	0,75	0,25	0,33	15,5
			0,9	1,3					14,5
90-S	1,5	2	1,1	1,5	0,75	1	0,37	0,5	19,5
90-L	2,2	3	1,5	2	1,1	1,5	0,55	0,75	22
			1,85	2,5					
100-L	3	4	2,2	3	1,5	2	0,75	1	33
			3	4	1,85	2,5	1,1	1,5	34
112	4	5,5	4	5,5	2,2	3	1,5	2	45
132-S	5,5	7,5	5,5	7,5	3	4	2,2	3	85
	7,5	10							85
132-M	9,2	12,5	7,5	10	4	5,5	3	4	95
	11	15	8,8	11,5	5,5	7,5	la .		104
160-M	11	15	9,2	12,5	7,5	10	4	5,5	138
	15	20	11	15			5,5	7,5	151
160-L	18,5	25	15	20	9,2	12,5	7,5	10	168
					11	15			180
180-L	22	30	18,5	25	15	20	11	15	250
			22	30					
200-L	30	40	30	40	18,5	25	15	20	195
	37	50			22	30			202

Motor no estándar / Not standard motor

⁻Los tipos 56 y 63 son de corriente continua

⁻The types 56 and 63 are direct current


MOTORES ELÉCTRICOS C.A. CON FRENO

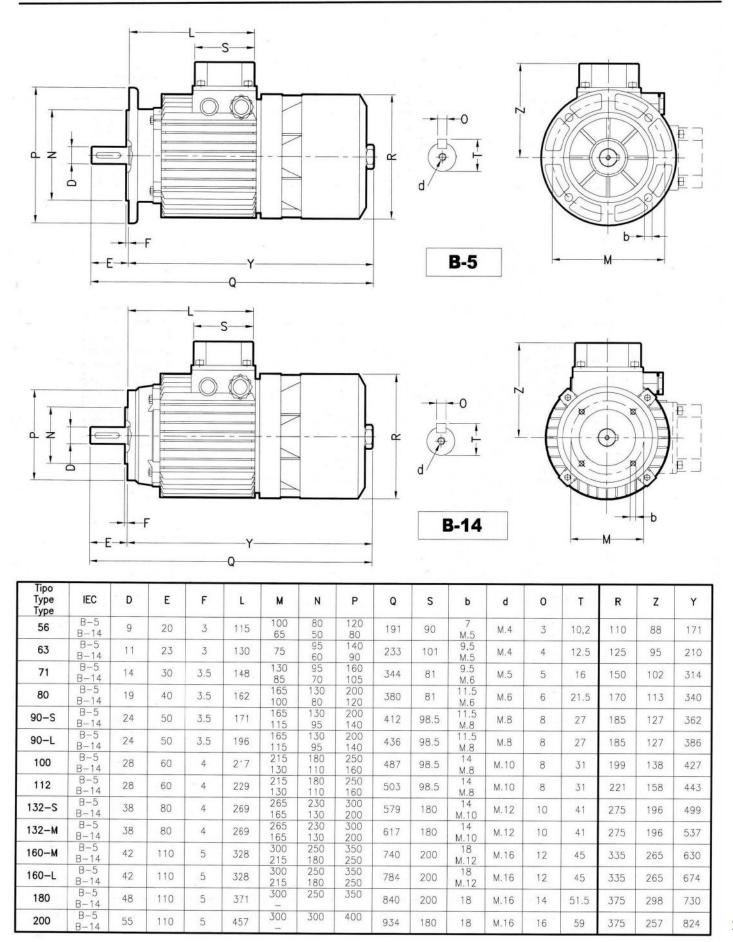
A.C. POWER BRAKE ELECTRIC MOTORS

B-3

Dimensiones

Dimensions

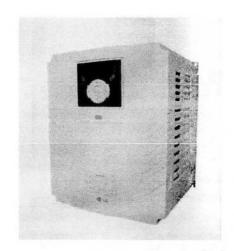
Tipo Type Type	IEC	Α	В	С	D	E	н	1	К	L	0	Q	S	_T	- V	d	R	Z	Y
56	B-3	90	71	35	9	20	56	6	8	115	3	191	90	10.2	7	M4	110	88	171
63	B-3	100	80	40	11	23	63	7	10.5	130	4	260	81	12.5	7	M4	120	89	237
71	B-3	112	90	45	14	30	71	7	10.5	148	5	344	81	16	8.5	M5	150	102	314
80	B-3	125	100	50	19	40	80	9	14	162	- 6	380	81	21.5	9.5	М6	170	113	340
90-S	B-3	140	100	56	24	50	90	10	14	171	8	412	98.5	27	10.5	M8	185	127	362
90-L	B-3	140	125	56	24	50	90	10	14	195	8	436	98.5	27	10.5	_ M8	185	127	386
100	B-3	160	140	63	28	60	100	12	15	217	8	487	98.5	31	13	M10	199	138	427
112	B-3	190	140	70	28	60	112	12.5	16	229	8	503	98.5	31	13.5	- M10	221	158	443
132-S	B-3	216	140	89	38	80	132	12	1-1	248	10	579	180	41	18	M12	275	196	499
132-M	B-3	216	178	89	38	80	132	12	-	260	10	617	180	41	18	M12	275	196	537
160-M	B-3	254	210	108	42	110	160	14 -		314	-12	740	200	45	18	M16	335	265	630
160-L	B-3	254	254	108	42	110	160	14		337	12	784	200	45	18	M16	335	265	674
180	B-3	279	279	121	48	110	180	14	_	360	14	840	200	51.5	22	M16	375	298	730
200	B-3	318	305	133	55	110	200	18	-	276	16	934	180	59	24	M16	375	257	824


NOTA: - LOS TIPOS 56 Y 63 EL FRENO ES DE CORRIENTE CONTINUA - THE TYPES 56 AND 63 THE BRAKE IS OF DIRECT CORRENT

MOTORES ELÉCTRICOS C.A. CON FRENO

A.C. POWER BRAKE ELECTRIC MOTORS

B-5 B-14



- * Modulación Control Vectorial Sensorless.
- * Algoritmo de control para bombas y ventiladores, (2 motores).
- * Auto tuning.
- * Control PID. Manual / Automático.
- * Función UP DOWN.
- * Posibilidad de control a 2 y 3 hilos.
- * Frecuencia de corte de 0,7 a 15 kHz.
- * Autoajuste de la frecuencia de corte de los IGBT's
- * 8 velocidades programables.
- * 3 frecuencias de salto.
- * Selección del tipo de señal de entrada NPN/PNP
- * 1 salida digital programable.
- * 1 salida analógica (0 ...12 Vcc) configurable.
- * 1 salida a colector abierto, configurable.
- * Salida de alimentación a 24 Vcc
- * Analógicas de entrada de:
 - -10 + 10; 0... 10 Vcc; 0 (4) ... 20mA
- * Par boost manual / automático.
- * Funcionamiento del ventilador seleccionable.
- * Ventilador desmontable fácilmente.
- * Consola extraible. Copia de parámetros.
- * Función JOG. Operación a impulsos.
- * Búsqueda al vuelo de la velocidad.
- * Programación de segundo motor.
- * Comunicación RS 485 (LGBuss, ModBus RTU)

Starvert IG5A

Convertidor compacto de control vectorial sensorless

0,4 - 7,5 Kw.

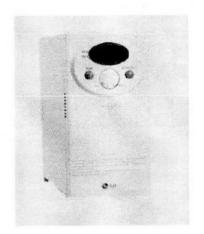
Características técnicas y dimensiones:

Serie iG5A-4 Alimentación trifásica 380...480 V (-15%+10%) 50 - 60 Hz (±5%)

Modelo	LGSV	004 iG5A-4	008 iG5A-4	015 iG5A-4	022 iG5A-4	040 iG5A-4	055 iG5A-4	075 iG5A-4			
Motor	(CV)	0,5	1	2	3	5,5	7,5	10			
	(kW)	0,37	0,75	1,5	2,2	4	5,5	7,5			
Intensidad	(A)	1,1	2,5	4	6	9	12	16			
kVA		1,1	1,9	3	4,5	6,5	9,1	12,2			
Frecuencia de	salida		Programable	e de 0 400 H	Z						
Modulo de frer	ado		Incorporad	lo en el equipo							
Tamaño Anche	o (W1) mm		70	100	140)	18	30			
Alto	(H1) mm		128	128	128	3	22	20			
Profu	ndo (D1) mm		130	130	158	5	17	70			
Peso			1,7	1,8	2,1		3,6	66			

Serie iG5A-2 Alimentación trifásica 200 ... 230 V (-15%+10%) 50 - 60 Hz (±5%)

Modelo	LGSV	004 iG5A-2	008 iG5A-2	015 iG5A-2	022 iG5A-2	040 iG5A-2	055 iG5A-2	075 iG5A-2
Motor	(CV)	0,5	1	2	3	5,5	7,5	10
	(kW)	0,37	0,75	1,5	2,2	4	5,5	7,5
Intensidad	(A)	2,5	5	8	12	17	24	32
kVA		1,1	1,9	3	4,5	6,5	9,1	12,2
Frecuencia de :	salida		Programable	e de 0 400 H	Z			
Modulo de fren	ado		Incorporad	lo en el equipo				
Tamaño Ancho	o (W) mm		70	100	140)	18	30
Alto	(H) mm		128	128	128	3	22	20
Profu	ndo (D) mm		130	130	155	5	1:	70
Peso	(Kgs)		1,7	1,8	2,1		3,	66



Starvert iC5-1, iC5-1F

- * Filtro RFI incorporado, serie IC5-1F.
- * Modulación Control Vectorial Sensorless.
- * Auto tuning.
- * Control PID. Manual / Automático.
- * Función UP DOWN.
- * Posibilidad de control a 2 y 3 hilos.
- * Potenciómetro incorporado.
- * Frecuencia de corte de 1 a 15 kHz.
- * 8 velocidades programables.
- * 3 frecuencias de salto.
- * Histórico de fallos (5 últimos fallos).
- * Rampas de aceleración y desaceleración programables: Lineal, S.
- * Ajuste de la base de tiempo de las rampas: 0,01s; 0,1s; 1s.
- * Frenado por inyección de CC.
- * Protección térmica electrónica.
- * 5 entradas digitales configurables (dual PNP / NPN).
- * 1 salida digital configurable, colector abierto.
- * 1 salida analógica configurable (0 ...10V).
- * Par boost manual / automático.
- * 150% del par nominal a 0,3 Hz.
- * Función Jog.
- * Búsqueda al vuelo de la velocidad.
- * Limitación de corriente a altas velocidades utilizando un DSP 32 bits.
- * Programación de segundo motor.

Micro convertidor de control vectorial sensorless

0,4 - 2,2 Kw.

Características técnicas y dimensiones:

Serie IC5-1 alimentación monofásica 220-230 V (+-10%) 50-60 Hz (+-5%)

Modelo LGSV	004 iC5-1	008 iC5-1	015 iC5-1	022 iC5-1
Motor (CV)	0,5	1	2	3
(kW)	0,37	0,75	1,5	2,2
INTENSIDAD (A)	2,5	5	8	12
kVA	0,95	1,9	3	4,5
Frecuencia de salida	Prog	ramable de 0 4	00 Hz	
Tamaño Ancho (W1) mm	79	79	156	156
Alto (H1) mm	143	143	143	143
Profundo (D1) mm	143	143	143	143
Peso (Kgs)	0,87	0,89	1,79	1,85

Serie IC5-1F con filtro RFI clase A incorporado

Modelo	LGSV	004 iC5-1F	008 iC5-1F	015 iC5-1F	022 iC5-1F
	Característi	cas técnicas y dim	ensiones iguales	al IC5-1	
Peso	(Kgs)	0,95	0,97	1,94	2

- * Control Space Vector Technology.
- * Equipado con un DSP de 32 bits de alta velocidad.
- * Control Pl. incorporado.
- * Frecuencia de corte de 2 a 10 kHz.
- * Par boost automático.
- * 8 entradas configurables.
- * 3 frecuencias de salto.
- * 6 entradas digitales configurables.
- * 5 salidas (3 a colector abierto, 2 a relé) configurables.
- * 1 salida analógica configurable de 4-20 mA.
- * Puerto de comunicación RS 232 incorporado.
- * Búsqueda al vuelo de la velocidad.
- * Posibilidad de control a 2 y 3 hilos.
- * Limitación de corriente a altas velocidades.
- * Consola extraible.
- * Consola con almacenamiento y copia de parámetros.
- * Puerto de comunicación RS-232.

Starvert iH

Convertidor robusto con dualidad de potencias: par constante, par variable.

30 - 220 kW.

Características técnicas y dimensiones:

Serie IH-4 Alimentación trifásica 380 ... 460 Vca (± 10 %) 50-60 Hz (+-5%)

Modelo	L	GSV	030 iH-4	037 iH-4	045 iH-4	055 iH-4	075 iH-4	090 iH-4	110 iH-4	132 iH-4	160 iH-4	220 iH-4
	Par constante	(CV)	40	50	60	75	100	125	150	175	215	300
Potencia	rai constante	(kW)	30	37	45	55	75	90	110	132	160	220
Motor	Par variable	(CV)	50	60	75	100	125	150	175	215	250	350
	rai valiable	(kW)	37	45	55	75	90	110	132	160	185	280
	Par constante	(A)	61	75	91	110	152	183	223	264	325	432
Carac. de	T al constante	(kVA)	40	50	60	70	100	120	145	170	200	280
salida	Par variable	(A)	80	96	115	125	160	228	264	330	361	477
	i ai valiable	(kVA)	52	62	74	80	103	147	170	213	233	307
Frecuenc	cia de salida		Prog	gramable	de 0,5 4	100 Hz						
Tamaño	Ancho (W1)	mm	350	350	375	375	375	530	530	530	530	680
	Alto (H1) n	nm	680	680	780	780	780	780	790	1000	1000	998
	Profundo (D1)) mm	308,2	308,2	326	326	326	335	335	345	345	403
Peso	(Kgs)		45	45	63	63	68	98	98	122	122	175

Serie iH-2 Alimentación trifásica 200 ... 230 Vca (±10%) 50 - 60 Hz (±5%)

Mode	lo LG	sv	030 iH-2	037 iH-2	045 iH-2	055 iH-2
Potencia	Par constante	(CV)	40	50	60	75
Motor	rai constante	(kW)	30	37	45	55
Carac. de	Par constante	(A)	122	146	180	220
salida	rai constante	(kVA)	46	55	68	83
Frecuenc	ia de salida		Prog	gramable	de 0 40	0 Hz
Tamaño	Ancho (W1) mm	37	75	3	75
	Alto (H1) mm	61	15	7.	80
	Profundo (D1)	mm	27	7,5	30	0,7
Peso	(K	gs)	4	2	5	i6

* Control Vectorial Sensoriess.

- * Algoritmo de control para bombas y ventiladores, (2 motores).
- * Auto tuning.
- * Control PID. Manual / Automático.
- * Función UP DOWN.
- * Posibilidad de control a 2 y 3 hilos.
- * Frecuencia de corte de 1 a 15 kHz.
- * Par boost automático.
- * 8 entradas configurables.
- * 3 frecuencias de salto.
- * 3 entradas digitales configurables,
- * 2 salidas a relé
- * 1 salida analógica (0 ...12 Vcc).
- * Puerto de comunicación RS 232 incorporado.
- Búsqueda al vuelo de la velocidad.
- * Función Jog. Operación a impulsos.
- * Limitación de la corriente a altas velocidades.
- Consola extraible. Copia de parámetros.
- * Puerto de comunicación RS-232

Características técnicas y dimensiones:

Serie iG5A-4 Alimentación trifásica 380...480 V (-15%+10%) 50 - 60 Hz (±5%)

Modelo	LGSV	008iS5-4	015iS5-4	022iS5-4	0371S5-4	055iS5-4	075iS5-4	110iS5-4	150iS5-4	185iS5-4	220iS5-4
Motor	(CV)	1	2	3	5	7,5	10	15	20	25	30
	(kW)	0.75	1,5	2,2	3,7	5,5	7,5	11	15	18,5	22
Intensidad	(A)	2,5	4	6	8	12	16	24	30	39	45
kVA	4.4	1,9	3	4,5	6,1	9,1	12,2	18,3	22,9	29,7	34,3
Frecuencia de s	salida		Progra	amable de (400 Hz					/h	
Par de frenado) %				150 9	%	
Tiempo máx. de	e frenado			5 seg	undos			Contro	lado por la	unidad de f	frenado
Unidad de frena			Ir	ncorporado	en el equi	ро			Opcio	nal	
Tamaño Anch	o (W1)*			150		2	200	2	250	30)4
Alto	(H1)*			284		3	355	3	85	46	60
Profu			1	56,5		18	32,5	2	201	23	34
Peso	(Kgs)	4,6	4,6	4,8	4,9	7,5	7,7	13,8	14,3	19,4	20

Serie iS5A-4 Alimentación trifásica 380...460 Vca (±10%) 50 - 60 Hz (±5%)

Mode	elo	LGSV	300iS5-4	370iS5-4	450iS5-4	5501S5-4	750iS5-4
Motor		(CV)	40	50	60	75	100
		(kW)	30	37	45	55	75
Intensidad	1	(A)	61	75	91	110	152
kVA			45	56	68	82	100
Unidad de	frenad	lo	Opc	cional (Unid	ad de frena	do, Resiste	encia)
Tamaño	Ancho	(W1) *	3	50		375	
	Alto	(H1)*	6	80		780	
	Profund	do (D1)*	3	11		330	
Peso		(Kgs)		15	6	3	68

Serie iS5-2 Alimentación trifásica 200 ... 230 Vca (±10%) 50 - 60 Hz (±5%)

Modelo	LGSV	008 iS5-2	015iS5-2	022iS5-2	037iS5-2	055iS5-2	075iS5-2	110iS5-2	150iS5-2	185iS5-2	220iS5-2
Motor	(CV)	1	2	3	5	7,5	10	15	20	25	30
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(kW)	0,75	1,5	2,2	3,7	5,5	7,5	11	15	18,5	22
Intensidad	(A)										
kVA		1,9	3	4,5	6,1	9,1	12,2	18,3	22,9	29,7	34,3
Frecuencia de	salida				rogramab	ie de 0 4	00 Hz				
Par de frenado)		10	00 %) %	
Tiempo máx d	e frenado		5 seg	gundos				Co	ntrolado p	or la unidad	de frena
Unidad de fren			Incorp	orada en e	el equipo		Opcio	nal			
Tamaño Anch	o (W1)*		1	50		20	00	2	50	3	304
Alto	(H1)*		2	84		35	55	3	85	4	460
200,000,000	indo (D1)*		15	6,5		182	2,5	2	01	2	234
Peso	(Kgs)	4,	.6	4,8	4,9	7,5	7,7	13,8	14,3	19,4	20

Serie iS5-2 Alimentación trifásica 200...230 Vca (±10%) 50 - 60 Hz (±5%)

delo L	GSV	300iS5-2	370iS5-2	450iS5-2	550185-2
	(CV)	40	50	60	75
	(kW)	30	37	45	55
d	(A)		f. blimb		
		45	56	68	82
e frenado		Opcional	(Unidad de	frenado, Re	sistencia)
Ancho	(W1) *	3	50	3	75
Alto	(H1)*	6	80	78	30
Profundo	(D1)*	3	11	3	30
	(Kgs)	4	12	6	it
	d le frenado Ancho Alto	(CV) (kW) d (A) le frenado Ancho (W1)* Alto (H1)* Profundo (D1)*	(CV) 40 (kW) 30 d (A) 45 le frenado Opcional Ancho (W1) * 3 Alto (H1)* 6 Profundo (D1)* 3	(CV) 40 50 (kW) 30 37 d (A) 45 56 le frenado Opcional (Unidad de Ancho (W1)* 350 Alto (H1)* 680 Profundo (D1)* 311	(CV) 40 50 60 (kW) 30 37 45 d 45 d 45 56 68 le frenado Opcional (Unidad de frenado, Re Ancho (W1)* 350 3 Alto (H1)* 680 70 Alto (D1)* 311 33

Starvert iS5

Convertidor de control vectorial de alto par y precisión.

0,75 - 75 Kw.

LISTA DE PIEZAS DE RECAMBIO -SERIE KM

SPARE PARTS LIST -SERIE MP

LISTES DES PIECES DE RECHANGE -SERIE MRD

MOTORES TRIFASICOS C. ALTERNA

A.C. ASYNCHRONOUS THREE-PHASE MOTOR

MOTEURS TRIPHASE ASYNCHRONES C.A.

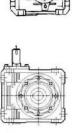
MOTORES ELECTRICOS CON FRENO C. ALTERNA

A.C. POWER BRAKE ELECTRIC MOTORS

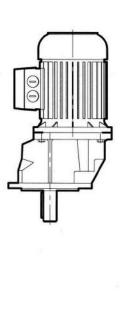
MOTEURS ELECTRICS AVEC FREIN C.A.

EMBRAGUE-FRENO

CLUTCH BRAKE UNITS


EMBRAYAGES FREINS

LISTA PIEZAS DE RECAMBIO



SPARE PARTS LIST LISTES DES PIECES	SPARE PARTS LIST LISTES DES PIECES DE RECHANGE	CHANGE		Series Série	E			
	RODAMIENTOS	OS - BEARINGS	GS - ROULEMENTS	MENTS	RETENES	ES / OLISEALS	3 / BAGUE D'ETANCHEITE	HEITE
	6	11	12	20	10	13	14	21
25	16004	1	0009	I	20 x 42 x 7	28 x 4	17 x 30 x 7	1
30	61904	6201	6301	61904	25 × 47 × 7	32 x 5	20 × 30 × 7	12 x 32 x 7
40	6006-2	Z-5009	6203	6303	30 × 40 × 7	40 x 7	25 x 35 x 7	17 x 40 x 7
45	16007	Z-5009	6203	Z-9009	35 x 47 x 7	40 x 7	25 x 35 x 7	17 x 40 x 7
20	Z - 8009	9009	6204	9009	40 × 62 × 8	47 x 7	38 x 47 x 7	20 × 47 × 7
63	Z - 6009	2009	6205	30305	45 x 65 x 8	52 x 7	35 × 52 × 7	25 x 52 x 7
75	6010 - Z	32008	30208	32008	50 × 72 × 8	62 x 7	40 × 60 × 10	30 × 62 × 7
06	6012 - Z	32608	32206	32008	60 × 85 × 8	62 x 7	40 × 60 × 10	30 × 62 × 7
110	6013 - Z	32010	32207	30307	65 x 85 x 10	72 x 10	50 x 68 x 8	35 x 72 x 10
130	6014 - Z	3210	33207	30307	79 × 90 × 10	72 x 10	50 x 68 x 8	35 × 72 × 10

LISTA PIEZAS DE RECAMBIO SPARE PARTS LIST LISTES DES PIECES DE RECHANGE

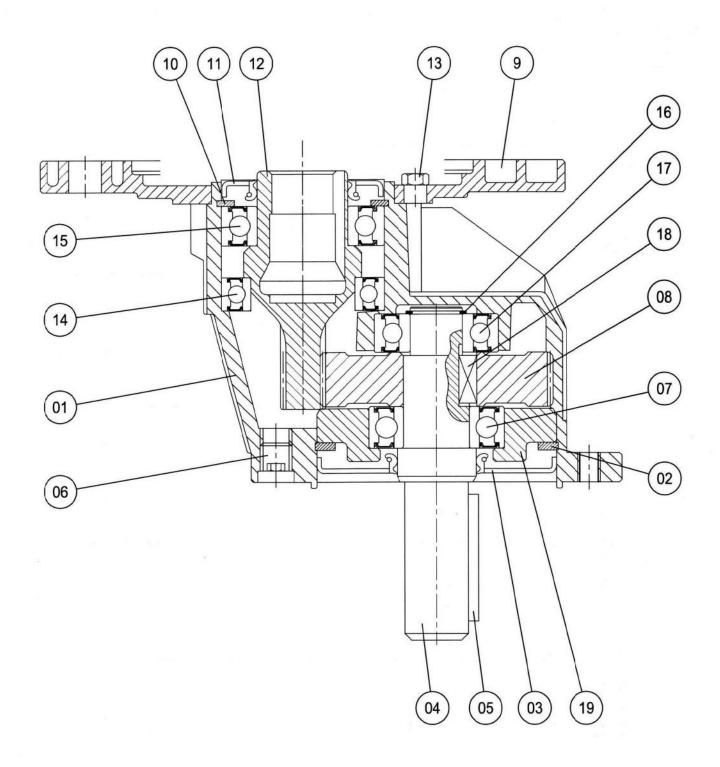
2007 21. 1481		RODAMIENTOS / BEAR	/ BEARINGS / ROULEMENTS		RETENES / BAGUE D'E	RETENES / OLISEALS BAGUE D'ETANCHEITE
	07	17	14	15	. 11	03
63	6202 - 2Z	6201 - 2Z	6004 - 2Z	6004 - 2Z	20 × 42 × 7	20 × 62 × 7
71	6204 - 2Z	6303 - 2Z	6005 - 2Z	6005 - 2Z	25 × 47 × 7	25 × 72 × 7
80	6205 - 2Z	6204 - 2Z	6007 - 2Z	IEC - 80 6007 - 2 Z	35 x 62 x 7	30 × 90 × 7
				IEC - 90		
	··	= =		61908 - E		
100	6206 - 22	6205 - 2Z	6008 - 2Z	6008 - 2Z	40 × 68 × 8	30 × 90 × 7

REDUCTORES

REDUCERS

Despiece

REDUCTEURS


Serie

Series MP

Série

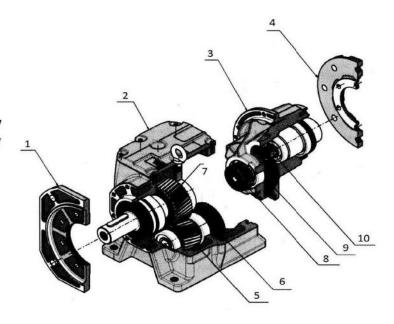
Quartering

Dépeçage

DESPIECE/QUARTERING/DÉPEÇAGE

 MRD 2 TRENES DE ENGRANAJES MRD 2 GEAR TRAINS MRD 2 TRAINS D'ENGRENAGES

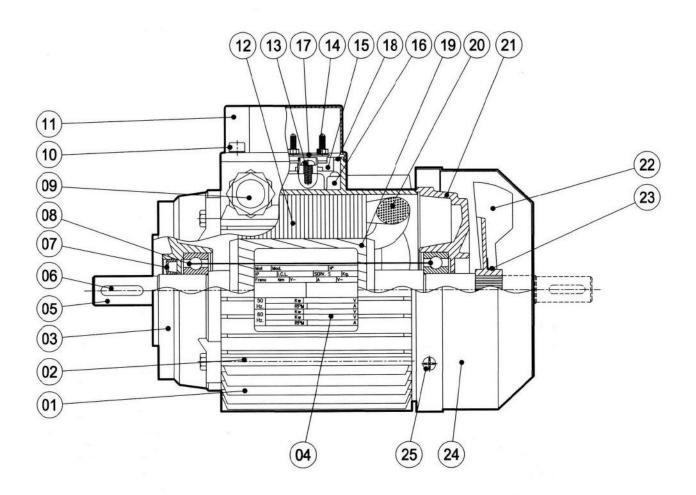
- 1. Brida de salida Output flange Bride de sortie
- 2. Carcasa con engranajes 5, 6 y 7 **Housing with gears 5, 6 and 7** *Boîtier d'engrenages 5, 6 et 7*
- 3. Tapa de entrada **Inlet cap** Couvercle d'entrée
- 4. Brida motor **Engine flange** Bride de moteur

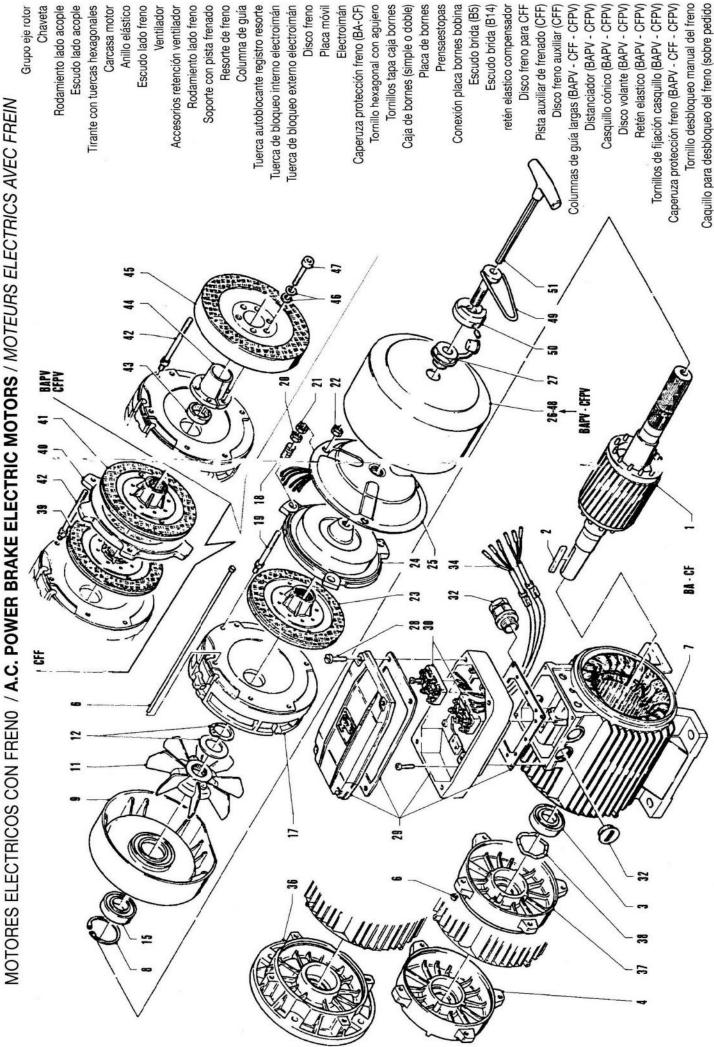


 MRD 3 TRENES DE ENGRANAJES MRD 2 GEAR TRAINS MRD 2 TRAINS D'ENGRENAGES

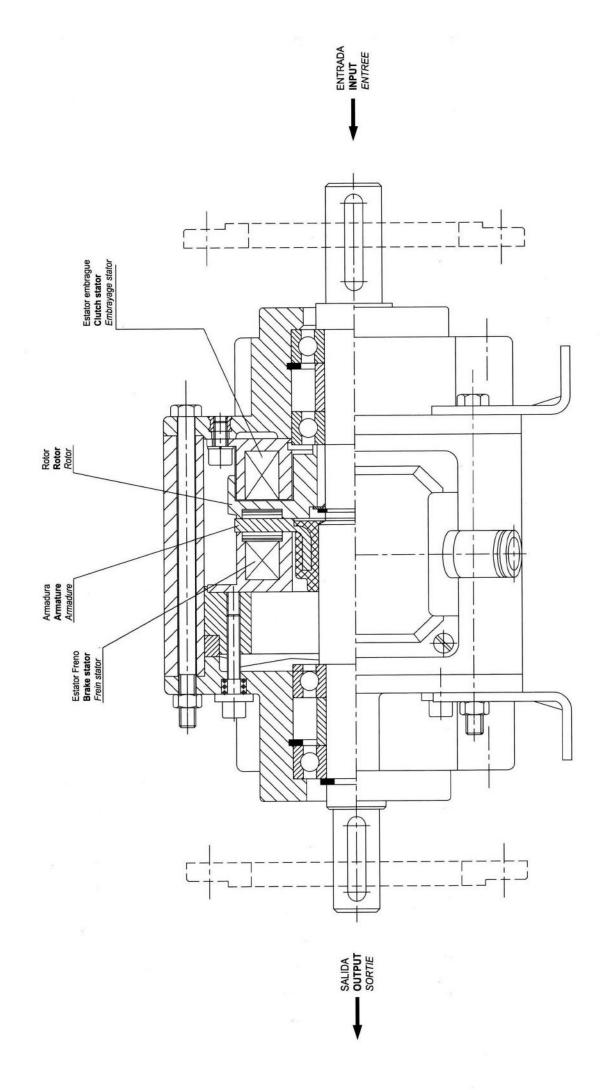
- 1. Brida de salida
 Output flange
 Bride de sortie
- 2. Carcasa con engranajes 5, 6 y 7 **Housing with gears 5, 6 and 7** *Boîtier d'engrenages 5, 6 et 7*
- 3. Tapa de entrada **Inlet cap** Couvercle d'entrée
- 4. Brida motor

 Engine flange


 Bride de moteur


Despiece/Quartering/Dépeçage

MOTORES TRIFÁSICOS C. ALTERNA - A.C. THEREEFASE MOTOR - MOTEURS TRIPHASE C. A.



1	Carcasa	14	Bornes de conexión
2	Tirante	15	Caja de bornes
3	Escudo delantero (brida si B5 o B14)	16	Tornillo de tierra
4	Placa	17	Puentes de conexión
5	Eje	18	Revestimiento de cubrebornes
6	Chaveta	19	Rotor
7	Anillo de retención (o V-ring si B3)	20	Bobinado
8	Cojinete 2Z	21	Escudo trasero
9	Prensacable	22	Ventilador
10	Tornillos cubrebornes	23	Anillo de fijación del ventilador
11	Cubrebornes	24	Cubreventilador
12	Estator	25	Tornillos de fijación del cubreventilador
13	Tornillos de fijación de la placa de bornes		

Llave T para rotación manual del eje (sobre pedido)

EMBRAGUE - FRENO

CLUTCH BRAKE UNITS EMBRAYAGES FREINS